az United States Patent

Ghafourifar et al.

US012299016B2

a0y Patent No.: US 12,299,016 B2
(45) Date of Patent: May 13, 2025

(54)

(71)

(72)

(73)

*)

4y
(22)

(65)

(63)

(51)

(52)

SEARCH-BASED NATURAL LANGUAGE
INTENT DETECTION, SELECTION, AND
EXECUTION FOR MULTI-AGENT
AUTOMATION SYSTEMS

Applicant: Entefy Inc., Palo Alto, CA (US)

Inventors: Alston Ghafourifar, Los Altos Hills,
CA (US); Mehdi Ghafourifar, Los
Altos Hills, CA (US)

Assignee: Entefy Inc., Palo Alto, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 18/421,408

Filed: Jan. 24, 2024

Prior Publication Data

US 2024/0241895 Al Jul. 18, 2024

Related U.S. Application Data

Continuation of application No. 18/148,855, filed on
Dec. 30, 2022, now Pat. No. 11,914,625, which is a

(Continued)
Int. CL.
GO6F 7/00 (2006.01)
GO6F 16/3329 (2025.01)
(Continued)
U.S. CL

CPC ... GUOG6F 16/3329 (2019.01); GOGF 16/3334
(2019.01); GOGF 16/3344 (2019.01);

(Continued)

(58) Field of Classification Search
CPC GO6F 16/3329; GO6F 16/3334; GOGF
16/3344; GOGF 40/253; GOGF 40/205;
GOG6F 40/117

(Continued)
(56) References Cited

U.S. PATENT DOCUMENTS

5,481,597 A 1/1996 Given
5,951,638 A 9/1999 Hoss

(Continued)
FOREIGN PATENT DOCUMENTS
WO 9931575 6/1999
WO 2013112570 Al 8/2013

Primary Examiner — Isaac M Woo
(74) Attorney, Agent, or Firm — Haynes and Boone, LLP

(57) ABSTRACT

Improved intelligent personal assistant (IPA) software
agents are disclosed that are configured to interact with
various people, service providers, files, and/or smart
devices. More particularly, this disclosure relates to an
improved Natural Language Processing (NLP) Intent Deter-
mination Service (IDS) that is able to determine the likely
best action to take in response to generic user commands and
queries. The improved NLP IDS disclosed is said to be
‘search-based’ because, rather than attempt to parse incom-
ing user commands and queries up front, the incoming user
commands and queries are searched against a pre-generated
database of exemplary user commands (e.g., having associ-
ated action or parsing identifiers) to determine the most
relevant search result(s). The associated system actions and
known grammar/parsing rules of the most relevant search
result(s) may then be used to process the incoming user
command or query—without having to actually parse the
incoming user command or query from scratch.

20 Claims, 10 Drawing Sheets

608 wq CREATE COMMAND REGISTRY BASED ON

CURRENT SYSTEM CAPABILITIES ‘

R

(REATE ACTION REGISTRY BASED ON
CURRENT SYSTEM CAPABILITIES

!

60

2

USE NATURAL LANGUAGE (NL)
GENERATOR TO GENERATE DESIRED
NUMBER OF COMMARD VARIANTS FOR

EACH COMMAND IN COMMAND REGISTRY

I

&

e

TAG EACH GENERATED COMMAND
VARIANT WITH APPROPRIATE ACTION_ID
FROM ACTION REGISTRY

!

610
\| STORE AL TAGGED COMMAND VARIANTS
IN DOCUMENT STCRE
6l2
\((CREATE SEARCH INDEX ON DOCUMENT
STORE
6|4\ USE “FUZZY' SEARCH TO DETERHMINE

MOST RELEVANT SYSTEM ACTION_ID(S),
BASED ON AN INCOMING COMMAND OR
QUERY

US 12,299,016 B2

Page 2
Related U.S. Application Data 2004/0266411 Al 12/2004 Galicia
o o 2005/0015443 Al 1/2005 Levine
continuation of application No. 16/905,830, filed on 2005/0065777 Al* 3/2005 Dolan GOGF 40/211
Jun. 18, 2020, now Pat. No. 11,573,990, which is a _ 707/E17.058
continuation of application No. 15/858,876, filed on %882; g?ggffg; ﬁ} ‘9‘;%882 E!fscﬁ
2 IT'SC
Dec. 29, 2017, now abandoned. 2006/0193450 Al £2006 Flynt
2007/0054676 Al 3/2007 Duan
(51) Int. CL 2007/0130273 Al 6/2007 Huynh
GO6F 16/3332 (2025.01) 2007/0237135 Al 10/2007 Trevallyn-Jones
GO6F 16/334 (2025.01) 2008/0062133 Al 3/%008 Wolf
GOGF 40/205 (2020.01) 2008/0261569 Al 10/2008 Britt
- 2009/0016504 Al 1/2009 Mantell
GO6F 40/253 (2020.01) 2009/0119370 A1 5/2009 Stern
(52) US.CL 2009/0177744 Al 7/2009 Marlow
CPC ... GOGF 40/117 (2020.01); GOGF 40/205 20000181702 AL 72009 ;’gﬁas
(2020.01); GO6F 40,253 (2020.01) 2000/0292814 Al 112009 Ting
(58) Field of Classification Search 2009/0299996 Al 12/2009 Yu
USPC e 707/600-899 2010/0057872 Al 3/2010 Koons
See application file for complete search history. 2010/0210291 Al 8/2010 Lauer
2010/0220585 Al 9/2010 Poulson
. 2010/0229107 Al 9/2010 Turner
(56) References Cited 2010/0323728 Al 122010 Gould
2010/0325227 Al 12/2010 Novy
U.S. PATENT DOCUMENTS 2011/0051913 Al 3/2011 Kesler
6101320 A 92000 S 2011/0078247 Al 3/2011 Jackson
,101, chuetze 2011/0130168 Al 6/2011 Vendrow
6,950,502 Bl 9/2005 Jenkins 2011/0194629 Al 8/2011 Bekanich
7,450,937 Bl 11/2008 Claudatos 2011/0219008 Al 9/2011 Been
7,673,327 Bl 3/2010 Polis 2012/0016858 Al 1/2012 Rathod
7,886,000 Bl 22011 Polis 2012/0209847 Al 8/2012 Rangan
7,908,647 Bl 3/2011 Polis 2012/0210253 Al 82012 Luna
8,090,787 B2 /2012 Polis 2012/0221962 Al 8/2012 Lew
8,095,592 B2 /2012 Polis 2013/0018945 Al 1/2013 Vendrow
38,108,460 B2 1/2012 Polis 2013/0024521 Al 1/2013 Pocklington
8,112,476 B2~ 2/2012 Polis 2013/0035932 Al 2/2013 Bangalore
8,122,080 B2 22012 Polis 2013/0097279 Al 4/2013 Polis
8,156,183 B2~ 4/2012 Polis 2013/0151508 Al 6/2013 Kurabayashi
8,281,125 Bl 10/2012 Briceno 2013/0262852 Al 10/2013 Roeder
8,206,360 B2 10/2012 Polis 2013/0267264 Al 10/2013 Abuelsaad
gg;;g; gé ‘S‘ggg Pfo_dze 2013/0304830 Al 112013 Olsen
8458256 B2 62013 POI!S 2013/0332308 Al 12/2013 Linden
128, OlS 2014/0270131 A1 9/2014 Hand
8,458,292 B2 6/2013 Polis
. 2014/0280460 Al 9/2014 Nemer
8,458,347 B2 6/2013 Polis "
8468202 B2 6/2013 Polis 2014/0297807 Al 10/2014 Dasgupta
8521526 Bl 82013 Lloyd 2015/0039887 Al 2/2015 Kahol
8.950.156 B2 2/2015 Polis 2015/0112971 Al 4/2015 Wolfram
9,875,740 Bl 1/2018 Kumar 2015/0186455 Al 7/2015 Horling
2002/0133509 Al 9/2002 Johnston 2015/0278370 Al 10/2015 Stratvert
2002/0152091 Al 10/2002 Nagaoka 2015/0281184 Al 10/2015 Cooley
2002/0178000 Al 11/2002 Aktas 2015/0286943 Al 10/2015 Wang
2002/0194322 Al 12/2002 Nagata 2016/0087944 Al 3/2016 Downey
2004/0117507 Al 6/2004 Torma 2017/0024443 A1 1/2017 Dayan
2004/0137884 Al 7/2004 Engstrom i)
2004/0243719 Al 12/2004 Roselinsky * cited by examiner

US 12,299,016 B2

Sheet 1 of 10

May 13, 2025

U.S. Patent

1IAYIS
4IM

\—081

1IN3S
1dY

gL

A

gyl

(=g

e W,

0S|

Ay

0¥l

U.S. Patent May 13, 2025 Sheet 2 of 10 US 12,299,016 B2

'/-200
/—225 /—205

/
L 210
PROCESSING UNIT d
3 L1245
0}/ POSITIONAL |,
INPUT INPUT/ SENSOR(S)
OUTPUT
L~—115
BUS v
MEMORY
220
DISPLAY NETWORK I/F /
235 || pa—

FIG. 2A

U.S. Patent May 13, 2025 Sheet 3 of 10 US 12,299,016 B2

'CODE \ 250
| MEMORY 215
|
|
:
. Y
: FRONT END
I
: DECODER(S) N 270
|
I
|
| REGISTER SCHEDULING
| RENAMING
I 26 264
' N 260
I
|
] A
: EXECUTION LOGIC
|
| EU-| EU-2 L EU-N
| N\ 280
; < AN <
| N 285-| N\ 2852 ! N 285N
: BACK END
| RETIREMENT
N
Y L0GIC N 295 i
PROCESSUNG UNIT CORE 210

FIG. 2B

U.S. Patent May 13, 2025 Sheet 4 of 10 US 12,299,016 B2

(WHAT’S YOUR FAVORITE

@ PLACE TO TRAVEL TO?
D PROBABLY HAVE TO SAY e 30
ITALY. YOU CAN'T BEAT K
THE FOOD, AND THE

SCENERY IS NOT BAD,
EITHER!) \\&

‘ tl AGREE. I'D LOVE TO
GO THERE SOME DAY.

310

FIG. 3

US 12,299,016 B2

Sheet 5 of 10

May 13, 2025

U.S. Patent

Vv 9Id

«d409 01 INJWNI0Q 140434 TVANNY FHL ANAS,

fcq

U.S. Patent May 13, 2025 Sheet 6 of 10 US 12,299,016 B2

42h

DOCUMENT STORE

425j v 430
“SEND THE FILE.” | {ACTION_ID: MSG_SEND}
“SEND MY ORDER.” | {ACTION_ID: MSG_SEND}
“SEND IT OVER MY WAY.” | {ACTION_ID: MSG_SEND}
“MAKE SURE IT GETS SENT TO ME.” | {ACTION_ID: MAKE_REMINDER}
“SENDING NOW IS THE WAY TO GO.” | {ACTION_ID: MSG_SEND}
“MAKE SURE IT'S SENT.” | {ACTION_ID: MAKE_REMINDER}
“SEND THE MISSION REPORT.” | {ACTION_ID: MSG_SEND}
“SEND A MESSAGE FOR PIZIA” | {ACTION_ID: ORDER_PIZIA}
“HAVE SOME FLOWER SENT.” | {ACTION_ID: ORDER_FLOWERS}
“SEND A VERSION.” | {ACTION_ID: MSG_SEND}
“SEND THE LATEST VERSION.” | {ACTION_ID: MSG_SEND}
“SEND A RESPONSE TO JIM.” | {ACTION_ID: MSG_SEND}
“LET ME KNOW WHEN IT IS SENT.” | {ACTION_ID: MAKE_REMINDER}
“TELL ME THE SEND DATE.” | {ACTION_ID: MSG_QUERY}
“SEND A RESPONSE.” | {ACTION_ID: MSG_SEND}
“SEND A REPLY.” | {ACTION_ID: MSG_SEND}
“CONFIRM THAT IT WAS SENT TO fIM.” | {ACTION_ID: MSG_QUERY}

FIG. 4B

U.S. Patent May 13, 2025 Sheet 7 of 10 US 12,299,016 B2

400—y

. v 435

INDEXED SEARCH

DOCUMENT STORE
420

SEARCH RESULTS

455—\‘ MOST RELEVANT SEARCH RESULTS (>80%)

o - - A - - A - - e W e A e W e e T e e A T e e A e W A A e W A A e e e A e e e A

e “SEND A RESPONSE.” | {ACTION_ID: MSG_SEND} (95%)
e “SEND A REPLY.” | {ACTION_ID: MSG_SEND} (95%)
[

MODERATELY RELEVANT SEARCH RESULTS (50-79%)
o “SEND A MESSAGE FOR PIZZA” | {ACTION_ID: ORDER_PIZIA} (65%)
e “HAVE SOME FLOWER SENT.” | {ACTION_ID: ORDER_FLOWERS} (54%)

470 W

LESS RELEVANT SEARCH RESULTS (<50%)
e “LET ME KNOW WHEN IT IS SENT.” | {ACTION_ID: MAKE_REMINDER} (44%)

FIG. 4C

US 12,299,016 B2

Sheet 8 of 10

May 13, 2025

U.S. Patent

G 9Ol4

v081-

1IAYS

<L

VoLl

1IAY3S

IdY

9€5 YITANVH
IS AT19YNI-GIM

4091

S YI1ANYH
IS AT19YNT-1dY

Y091

NTEY Y3TANYH 101

40511

Y05 1—1

1265 YI1ANVH 101

HTES YI1ANYH 101

LR N]

47es ¥I1GNYH 101

/)

\

VZES YITANYH 101

0€S DIAYIS 101

08s
ALSIO3Y NOLLDV

0Ls
X30NI
HJYY3S OLS Jod

(143
J40LS INIWMI0Q

095
401V4INID
1DVAONVT TVHNIYN

059
MISIDIY ANVIWWOD

0bs (sal) 1DIAYS
NOLLYNIWYALIQ INTINI

<<
[0}

(

MESSAGING SERVICE

A

A

A

A

A

U.S. Patent May 13, 2025 Sheet 9 of 10 US 12,299,016 B2

6"“&‘ 602\ CREATE COMMAND REGISTRY BASED ON

CURRENT SYSTEM CAPABILITIES

Y

604 | CREATE ACTION REGISTRY BASED ON
\d CURRENT SYSTEM CAPABILITIES

;

606 USE NATURAL LANGUAGE (NL)

NI GENERATOR TO GENERATE DESIRED
NUMBER OF COMMAND VARIANTS FOR
EACH COMMAND IN COMMAND REGISTRY

Y

603\ TAG EACH GENERATED COMMAND
VARIANT WITH APPROPRIATE ACTION_ID
FROM ACTION REGISTRY

Y

610
\| STORE ALL TAGGED COMMAND VARIANTS

IN DOCUMENT STORE

A 4

612
\| CREATE SEARCH INDEX ON DOCUMENT
STORE
\ 4
614

\ USE ‘FULLY' SEARCH TO DETERMINE

MOST RELEVANT SYSTEM ACTION_ID(S),

BASED ON AN INCOMING COMMAND OR
QUERY

FIG. 6A

U.S. Patent May 13, 2025 Sheet 10 of 10 US 12,299,016 B2
622 620
N{ USER ACTIVATES UNNERSAL 156 BOX | «—(stRT) /
624 v 4
\J

USER COMPOSES ‘GENERIC’ QUERY
ADDRESSED TO INTELLIGENT PERSONAL ASST

626

QUERY SENT_ NO

T0 SERVER?

628
N\ SVR RECEIVES ‘GENERIC’ QUERY MSG 0B}

630 v
\J RUN SEARCH OF MSG 0BJ’S COMMAND
AGAINST DOC STORE SEARCH INDEX
632 v
\ RANK SEARCH RESULTS BY RELEVANCE

SINGLE RESULT
IDENTIFIED WITH
GREATER THAN
THRESHOLD
RELEVANCE?

636
\ SELECT SINGLE IDENTIFIED RESULT

638 v

EXECUTE THE ACTION, RETURN THE
FILE/MSG, ETC., ASSQCIATED WITH THE
SELECTED SEARCH RESULT

640

\J GENERATE Al RESPONSE ASKING USER

FOR CLARIFICATION BETWEEN THE
MULTIPLE IDENTIFIED RESULTS (OR
LACK OF IDENTIFIED RESULTS)

|

642
\4

RECEIVE SELECTION OF DESIRED
RESULT FROM USER

/

__,(

END

FIG. 6B

US 12,299,016 B2

1
SEARCH-BASED NATURAL LANGUAGE
INTENT DETECTION, SELECTION, AND
EXECUTION FOR MULTI-AGENT
AUTOMATION SYSTEMS

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of U.S. patent applica-
tion Ser. No. 18/148,855, filed Dec. 30, 2022, and entitled
“Search-Based Natural Language Intent Determination,”
which is a continuation of U.S. patent application Ser. No.
16/905,830, filed Jun. 18, 2020, and entitled “Search-Based
Natural Language Intent Determination,” now issued as U.S.
Pat. No. 11,573,990, which is a continuation of U.S. patent
application Ser. No. 15/858,876, filed Dec. 29, 2017, and
entitled “Search-Based Natural Language Intent Determina-
tion,” which is related to the commonly-assigned and co-
pending non-provisional patent application having U.S. pat-
ent application Ser. No. 15/396,503, filed Dec. 31, 2016, and
entitled “Distributed Natural Language Message Interpreta-
tion Engine” (hereinafter, “the 503 application™), all of
which are hereby incorporated by reference in their entirety.

TECHNICAL FIELD

This disclosure relates generally to apparatuses, methods,
and computer readable media for improved natural language
processing (NLP) intent determination, e.g., for use with
intelligent personal assistant software agents that are con-
figured to interact with people, services, and devices across
multiple communications formats and protocols.

BACKGROUND

Intelligent personal assistant (IPA) software systems com-
prise software agents that can perform various tasks or
services on behalf of an individual user. These tasks or
services may be based on a number of factors, including:
spoken word or verbal input from a user, textual input from
a user, gesture input from a user, a user’s geolocation, a
user’s preferences, a user’s social contacts, and an ability to
access information from a variety of online sources, such as
via the World Wide Web. However, current IPA software
systems have fundamental limitations in natural language
processing, natural language understanding (NLU), and so-
called “intent determination” in practical applications.

For example, in some systems, language context and
action possibilities gleaned from user commands may be
constrained ‘up front’ by identifying the specific service that
the user is sending the command to before attempting to
perform any NLP/NLU—thus increasing the accuracy of
results and significantly reducing the amount of processing
work needed to understand the commands. However, this
strategy may not provide a satisfactory user experience in
the context of Al-enabled IPAs, wherein the user may often
engage in macro-level ‘conversations’ with his or her device
via a generic query to a single IPA ‘persona’ that is capable
of interacting with many third-party services, APIs, file,
document, and/or systems. In such situations, it becomes
more complex and challenging for the IPA to reliably direct
the user’s commands to the appropriate data, interface,
third-party service, etc.—especially when a given command
may seemingly apply with equal validity to two or more
known third-party interfaces or services that the IPA soft-
ware agent is capable of interfacing with. For example, the
command, “Send {item}.” may apply with seemingly equal

25

35

40

45

2

validity to a native text messaging interface, a native email
client, a third-party messaging interface, a flower delivery
service, etc.

Moreover, it is quite computationally expensive to
attempt to parse the grammar of each incoming user com-
mand or query ‘up front,” i.e., to attempt to determine the
intent of the user’s command and/or which specific services,
APIs, file, document, or system the user intends for his
command to be directed to. Computationally-expensive
parsing may also be used to determine how certain words or
phrases in the user’s command depend on, relate to, or
modify other words or phrases in the user’s command,
thereby giving the system a greater understanding of the
user’s actual intent.

NLP systems may be used to attempt to glean the true
intent of a user’s commands, but the success of such systems
is largely dependent upon the training set of data which has
been used to train the NLP system. NLP also requires
computationally-intensive parsing to determine what parts
of the user’s command refer to intents, which parts refer to
entities, which parts refer to attributes, etc., as well as which
entities and attributes are dependent upon (or are modifying)
which intents.

The subject matter of the present disclosure is directed to
overcoming, or at least reducing the effects of, one or more
of the problems set forth above. To address these and other
issues, techniques that enable a more computationally-effi-
cient, so-called ‘search-based,” NLP intent determination
system are described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating a network architec-
ture infrastructure, according to one or more disclosed
embodiments.

FIG. 2A is a block diagram illustrating a computer which
could be used to execute the various processes described
herein, according to one or more of disclosed embodiments.

FIG. 2B is a block diagram illustrating a processor core,
which may reside on a computer, according to one or more
of disclosed embodiments.

FIG. 3 shows an example of an electronic device execut-
ing an IPA-enabled system, according to one or more
disclosed embodiments.

FIG. 4A is a diagram illustrating the parsing of a user
command, according to one or more disclosed embodiments.

FIG. 4B illustrates an exemplary document store for
natural language-generated exemplary user command vari-
ants, according to one or more disclosed embodiments.

FIG. 4C is a block diagram illustrating an indexed search
of an exemplary user command against a document store of
natural language-generated exemplary user command vari-
ants, according to one or more disclosed embodiments.

FIG. 5 is a block diagram of an NLP Intent Determination
Service (IDS), according to one or more disclosed embodi-
ments.

FIG. 6A shows a flowchart for a method for establishing
an NLP Intent Determination Service, according to one or
more disclosed embodiments.

FIG. 6B shows a flowchart for a search-based NLP Intent
Determination method for determining the appropriate
action for an IPA to take in response to a generic user
command, according to one or more disclosed embodiments.

DETAILED DESCRIPTION

Disclosed are systems, methods, and computer readable
media for improved intelligent personal assistant (IPA)

US 12,299,016 B2

3

software agents that are configured to interact with various
people, service providers, files, and/or smart devices across
multiple communications formats and protocols in a seam-
less and intelligent fashion. More particularly, but not by
way of limitation, this disclosure relates to systems, meth-
ods, and computer readable media for an improved NLP
Intent Determination Service (IDS) that is able to determine
the likely best action to take in response to generic user
commands and queries (i.e., commands and queries that are
not explicitly directed to a particular service endpoint,
system, file, or smart device). The improved NLP IDS
described herein is said to be ‘search-based’ because, rather
than attempt to first parse incoming user commands and
queries using language parsing techniques that attempt to
break-apart and classify the input (e.g. using language rules,
grammar structures, keyword triggers, predefined expres-
sions, clustered word relationships, and so on), that is to say,
parse the incoming user commands “from scratch,” the
incoming user commands and queries are instead presented
to a search engine-style NLP intent determination system.
As will be described in greater detail below, the search
engine-style NLP system may be configured to ingest the
input user command strings and perform “searches” of them
against a pre-generated database of exemplary user com-
mands and queries (each capable of having an associated
system action identifier and/or parse identifier), in order to
determine the most relevant search result(s). The associated
system actions and known grammar/parsing rules of the
most relevant search result(s) may then be used to process
the incoming user command or query—without having to
actually parse the incoming user command or query from
scratch.

In the following description, for purposes of explanation,
numerous specific details are set forth in order to provide a
thorough understanding of the embodiments disclosed
herein. It will be apparent, however, to one skilled in the art
that the disclosed embodiments may be practiced without
these specific details. In other instances, structure and
devices are shown in block diagram form in order to avoid
obscuring the disclosed embodiments. References to num-
bers without subscripts or suffixes are understood to refer-
ence all instance of subscripts and suffixes corresponding to
the referenced number. Moreover, the language used in this
disclosure has been principally selected for readability and
instructional purposes, and may not have been selected to
delineate or circumscribe the inventive subject matter, resort
to the claims being necessary to determine such inventive
subject matter. Reference in the specification to “one
embodiment” or to “an embodiment” means that a particular
feature, structure, or characteristic described in connection
with the embodiments is included in at least one embodi-
ment.

The terms “a,” “an,” and “the” are not intended to refer to
a singular entity unless explicitly so defined, but include the
general class of which a specific example may be used for
illustration. The use of the terms “a” or “an” may therefore
mean any number that is at least one, including “one,” “one
or more,” “at least one,” and “one or more than one.” The
term “or” means any of the alternatives and any combination
of the alternatives, including all of the alternatives, unless
the alternatives are explicitly indicated as mutually exclu-
sive. The phrase “at least one of” when combined with a list
of items, means a single item from the list or any combi-
nation of items in the list. The phrase does not require all of
the listed items unless explicitly so defined.

As used herein, the term “system” or “computing system”
refers to a single electronic computing device that includes,

20

40

45

65

4

but is not limited to a single computer, VM, virtual con-
tainer, host, server, laptop, and/or mobile device or to a
plurality of electronic computing devices working together
to perform the function described as being performed on or
by the computing system.

As used herein, the term “medium” refers to one or more
non-transitory physical media that together store the con-
tents described as being stored thereon. Embodiments may
include non-volatile secondary storage, read-only memory
(ROM), and/or random-access memory (RAM).

As used herein, the term “application” refers to one or
more computing modules, programs, processes, workloads,
threads and/or a set of computing instructions executed by a
computing system. Example embodiments of an application
include software modules, software objects, software
instances and/or other types of executable code.

Referring now to FIG. 1, a network architecture infra-
structure 100 is shown schematically. The infrastructure 100
includes computer networks 110, interaction platform
devices 120 (e.g., devices implementing a centralized com-
munications system that allows users’ client devices to
seamlessly interact with any number of other client or
third-party devices via any communications protocol and/or
format), client devices 130, third-party communications
devices 140, third-party service provider devices 150, smart
devices 160, third-party APIl-enabled’ services 170, and
third-party ‘Web-enabled’ services 180.

The computer networks 110 may include any communi-
cations network that allows computers to exchange data,
such as the internet 111, local area networks 112, corporate
networks 113, cellular communications networks 114, etc.
Each of the computer networks 110 may operate using any
number of network protocols (e.g., TCP/IP). The computer
networks 110 may be connected to each other and to the
various computing devices described herein (e.g., the inter-
action platform devices 120, the client devices 130, the
third-party communications devices 140, the third-party
service provider devices 150, the smart devices 160, the
third-party ‘APIl-enabled’ services 170, and the third-party
‘Web-enabled’ services 180) via hardware elements such as
gateways and routers.

The interaction platform devices 120 may include one or
more servers 121 and one or more storage devices 122. The
one or more servers 121 may include any suitable computer
hardware and software configured to provide the features
disclosed herein. The storage devices 122 may include any
tangible computer-readable storage media including, for
example, read-only memory (ROM), random-access
memory (RAM), magnetic disc storage media, optical stor-
age media, solid state (e.g., flash) memory, etc.

The client devices 130 may include any number of
computing devices that enable an end user to access the
features disclosed herein. For example, the client devices
130 may include, for example, desktop computers 131,
tablet computers 132, mobile phone 133, notebook comput-
ers 134, etc.

The third-party communications devices 140 may include
email servers such as a GOOGLE® email server (GOOGLE
is a registered service mark of Google Inc.), third-party
instant message servers, third-party social network servers
such as a FACEBOOK® or TWITTER® server (FACE-
BOOK is a registered trademark of Facebook, Inc. TWIT-
TER is a registered service mark of Twitter, Inc.), cellular
service provider servers that enable the sending and receiv-
ing of messages such as email messages, short message
service (SMS) text messages, multimedia message service

US 12,299,016 B2

5

(MMS) messages, or any other device that enables individu-
als to communicate using any protocol and/or format.

The third-party service devices 150 may include any
number of computing devices that enable an end user to
request one or more services via network communication.
The smart devices 160 may include any number of hardware
devices that communicate via any of the computer networks
110 and are capable of being controlled via network com-
munication. The third-party ‘API-enabled’ services 170 may
include any number of services that communicate via any of
the computer networks 110 and are capable of being con-
trolled via an Application Programming Interface (API),
such as a ride-sharing service. The third-party ‘Web-en-
abled’ services 180 may include any number of services that
may have no direct third-party interface, other than infor-
mational content, e.g., information hosted on a third-party
website or the like, such as a train schedule.

As is described in more detail in commonly-assigned U.S.
patent application Ser. No. 14/986,157 (“the *157 applica-
tion”), the Universal Interaction Platform (UIP) allows users
to interact with individuals, service providers, and smart
devices 160 by sending a message (in the form of a message
object) from a client device 130. The message object is
output by the client device 130 for transmittal to the server
121. When the user is interacting with a service provider, the
UIP may format an instruction for the third-party service
device 150 associated with the service provider and output
the instruction from the server 121 for transmittal to the
third-party service device 150. Similarly, when the user is
interacting with a smart device 160, the UIP may format an
instruction for the smart device 160 and output the instruc-
tion from the server 121 for transmittal to the smart device
160. The server 121 may also receive a response from the
third-party service device 150 or smart device 160, format a
response message (e.g., in the form of a response message
object) for the user, and output the response message object
for transmittal to the client device 130.

Referring now to FIG. 2A, an example processing device
200 for use in the communication systems described herein
according to one embodiment is illustrated in block diagram
form. Processing device 200 may serve in, e.g., a server 121
or a client device 130. Example processing device 200
comprises a system unit 205 which may be optionally
connected to an input device 230 (e.g., keyboard, mouse,
touch screen, etc.) and display 235. A program storage
device (PSD) 240 (sometimes referred to as a hard disk,
flash memory, or non-transitory computer readable medium)
is included with the system unit 205. Also included with
system unit 205 may be a network interface 220 for com-
munication via a network (either cellular or computer) with
other mobile and/or embedded devices (not shown). Net-
work interface 220 may be included within system unit 205
or be external to system unit 205. In either case, system unit
205 will be communicatively coupled to network interface
220. Program storage device 240 represents any form of
non-volatile storage including, but not limited to, all forms
of optical and magnetic memory, including solid-state stor-
age elements, including removable media, and may be
included within system unit 205 or be external to system unit
205. Program storage device 240 may be used for storage of
software to control system unit 205, data for use by the
processing device 200, or both.

System unit 205 may be programmed to perform methods
in accordance with this disclosure. System unit 205 com-
prises one or more processing units, input-output (1/0) bus
225 and memory 215. Access to memory 215 can be
accomplished using the communication bus 225. Processing

10

15

20

25

30

35

40

45

50

55

60

65

6

unit 210 may include any programmable controller device
including, for example, a mainframe processor, a mobile
phone processor, or, as examples, one or more members of
the INTEL® ATOM™, INTEL® XEON™, and INTEL®
CORE™ processor families from Intel Corporation and the
Cortex and ARM processor families from ARM. (INTEL,
INTEL ATOM, XEON, and CORE are trademarks of the
Intel Corporation. CORTEX is a registered trademark of the
ARM Limited Corporation. ARM is a registered trademark
of the ARM Limited Company). Memory 215 may include
one or more memory modules and comprise random access
memory (RAM), read only memory (ROM), programmable
read only memory (PROM), programmable read-write
memory, and solid-state memory. As also shown in FIG. 2A,
system unit 205 may also include one or more positional
sensors 245, which may comprise an accelerometer, gyrom-
eter, global positioning system (GPS) device, or the like, and
which may be used to track the movement of user client
devices.

Referring now to FIG. 2B, a processing unit core 210 is
illustrated in further detail, according to one embodiment.
Processing unit core 210 may be the core for any type of
processor, such as a micro-processor, an embedded proces-
sor, a digital signal processor (DSP), a network processor, or
other device to execute code. Although only one processing
unit core 210 is illustrated in FIG. 2B, a processing element
may alternatively include more than one of the processing
unit core 210 illustrated in FIG. 2B. Processing unit core 210
may be a single-threaded core or, for at least one embodi-
ment, the processing unit core 210 may be multithreaded, in
that, it may include more than one hardware thread context
(or “logical processor”) per core.

FIG. 2B also illustrates a memory 215 coupled to the
processing unit core 210. The memory 215 may be any ofa
wide variety of memories (including various layers of
memory hierarchy), as are known or otherwise available to
those of skill in the art. The memory 215 may include one
or more code instruction(s) 250 to be executed by the
processing unit core 210. The processing unit core 210
follows a program sequence of instructions indicated by the
code 250. Each instruction enters a front end portion 260 and
is processed by one or more decoders 270. The decoder may
generate as its output a micro operation such as a fixed width
micro operation in a predefined format, or may generate
other instructions, microinstructions, or control signals
which reflect the original code instruction. The front end 260
may also include register renaming logic 262 and scheduling
logic 264, which generally allocate resources and queue the
operation corresponding to the convert instruction for execu-
tion.

The processing unit core 210 is shown including execu-
tion logic 280 having a set of execution units 285-1 through
285-N. Some embodiments may include a number of execu-
tion units dedicated to specific functions or sets of functions.
Other embodiments may include only one execution unit or
one execution unit that can perform a particular function.
The execution logic 280 performs the operations specified
by code instructions.

After completion of execution of the operations specified
by the code instructions, back end logic 290 retires the
instructions of the code 250. In one embodiment, the pro-
cessing unit core 210 allows out of order execution but
requires in order retirement of instructions. Retirement logic
295 may take a variety of forms as known to those of skill
in the art (e.g., re-order buffers or the like). In this manner,
the processing unit core 210 is transformed during execution
of the code 250, at least in terms of the output generated by

US 12,299,016 B2

7

the decoder, the hardware registers and tables utilized by the
register renaming logic 262, and any registers (not shown)
modified by the execution logic 280.

Although not illustrated in FIG. 2B, a processing element
may include other elements on chip with the processing unit
core 210. For example, a processing element may include
memory control logic along with the processing unit core
210. The processing element may include I/O control logic
and/or may include /O control logic integrated with
memory control logic. The processing element may also
include one or more caches.

Exemplary Electronic Device User Interface

FIG. 3 shows an example of an electronic device 300
executing an [PA-enabled system, according to one or more
disclosed embodiments. The user interface 305 shown in
FIG. 3 may, e.g., be displayed on the display of a mobile
phone, laptop computer, wearable, or other computing
device. The user interface 305 may have a different layout
and configuration based on the type of application the user
is executing (e.g., a messaging application is illustrated in
FIG. 3), the type of device, and/or the size of display screen
that the user interface is being viewed on. In certain embodi-
ments, elements of user interface 305 may be interacted with
by a user utilizing a touchscreen interface or any other
suitable input interface, such as a mouse, keyboard, physical
gestures, verbal commands, or the like. It is noted that the
layout and content of user interface 300 has been selected
merely for illustrative and explanatory purposes, and in no
way reflects limitations upon or requirements of the claimed
inventions, beyond what is recited in the claims.

Also shown in the user interface 305 is an IPA activation
button 310. This IPA activation button 310 may have the
capability to launch an IPA software agent. In some embodi-
ments, the activating the IPA may comprise displaying a text
box into which a user may enter textual commands or
queries to be processed and acted upon by the IPA. Alter-
natively, or in addition, activating the IPA may cause a
microphone of the user’s device to begin listening for the
user’s verbal commands or queries. In still other embodi-
ments, the system’s [PA may always be ‘listening’ for user
commands or queries (e.g., in response to the user reciting
a unique [PA activation phrase), and thus not need to be
specifically activated, e.g., via clicking on IPA activation
button 310. As will be described herein, the IPA activated,
e.g., via button 310, may benefit from the improved NLP
IDS systems described herein.

Parsing an Exemplary User Command using a Search-Based
Query

Referring now to FIG. 4A, a diagram illustrating the
parsing of an exemplary user command 400 is shown,
according to one or more disclosed embodiments. As men-
tioned above, user commands and queries may come into a
system in the form of natural language input, e.g., via the use
of an IPA. In the example of FIG. 4A, the exemplary user
command 400 is, “Send the Annual Report Document to
Bob.” When attempting to understand the meaning of natu-
ral language input, NLP systems traditionally first attempt to
parse the command, i.e., in order to better understand its
meaning and take an appropriate responsive action. Parsing
may comprise, e.g., analyzing the command in terms of its
grammatical constituents, identifying the parts of speech,
syntactic relations, etc., between the words in the command.
By determining the parts of speech, meanings, and relation-
ships of the various constituent parts of the command, an
NLP system may build up a grammar for the user command.
However, even once the grammar is known, the NLP system
still has to determine what to do with the command, such as:

10

15

20

25

30

35

40

45

50

55

60

65

8

run a query, search for a document, make a call to an API,
send a message to a particular contact, etc.

Returning to the exemplary user command 400 of FIG.
4A, exemplary parse 405 shows that the verb “send” was
identified as a potential action for the system to execute.
Based on the grammar of the sentence, the phrase “the
Annual Report document” was determined to be the object
of the action “send.” Based on natural language processing
rules, the phrase “the Annual Report document” was deter-
mined to refer to a message. Thus, the parse of command
400 has determined that the user command is likely request-
ing to send a message of some sort. Further, the natural
language processing of the phrase “the Annual Report
document” indicated that there was some sort of document
or file attachment that needs to be included with the message
that the user is requesting to be sent. Finally, natural lan-
guage processing of the proper noun “Bob” (along with,
perhaps, Bob’s placement after the word “to”) indicated that
Bob is a likely contact of the user sending the command, and
Bob is who the message should be directed to. Thus, the
initial command, “Send the Annual Report Document to
Bob.” 400 has been parsed 405 to a meaning of effectively,
“JSend [type:Message]} to {Contact} with {Attachment}.”
As may be understood, many different utterances from the
user may have resulted in being parsed into the same
grammar as parsc 405. For example, “Send that picture to
Steven,” “Make sure Bob Johnson receives the file,” and
“Get Michael that cat video right away,” may each have
parsed to the fundamental meaning of: “{Send [type:Mes-
sage] } to {Contact} with {Attachment}.”

Once the system has parsed the command and under-
stands its fundamental meaning, the various actions, entities,
and attributes in the command (e.g., the other nouns, adjec-
tives, etc., in the command) have to be linked to real world
systems, services, actions, documents, files, persons, etc.
that the system knows about and knows how to deal with. In
the example of FIG. 4A, the various IDs 410 represent the
exemplary system ID equivalents for the exemplary parse
405. For example, based on the overall context of the
command, the {Send a Message} part of the command may
be determine to be an action that the user wants the system
to run and, in particular, the action with system Action_ID:
“MSG_SEND.” The action “MSG_SEND” in the system
may, for example, open up the system’s native messaging
application, and even generate a new email message object,
text message object, etc., for the message that is to be sent.
It is to be understood that, in other commands, the same
verb, “send,” may be determined to relate to an entirely
different user intent. For example, in the command, “Send
me a reminder at nine o’clock,” the command may be parsed
to determine that the user’s desired action is to create a
reminder on their calendar, and thus link to the action with
system Action_ID: “MAKE REMINDER.”

Likewise, the other parts of the command 400’s grammar
need to be linked to their system 1D equivalents before the
system can take action on the command. In this case, it is
known that the contact that is to be the recipient of the
message is a “Bob.” In this example, perhaps the person
named Bob that the user most frequently communicates with
(or has most recently communicated with) is Bob Jackson,
a contact of the user with Contact_ID: “Bob_Jackson.” In
cases where the system cannot resolve a contact (or other
system entity), or cannot resolve a single system entity with
sufficient relevance, the IPA system may ask a user for
clarification, for example, “Did you mean your contact Bob
Jackson or your contact Bob Smith?”

US 12,299,016 B2

9

Finally, in this example, it is known that the message is to
be sent with a document attachment that has been described
by the user as “the Annual Report.” As with the example of
resolving the contact Bob Jackson above, the system may
perhaps default to attaching the most frequently modified or
opened document with a filename or title metadata similar to
“the Annual Report,” which, in this case may be a document
with Document_ID: “Annual_Report.docx.” In cases where
the system cannot resolve a document, or cannot resolve a
single document with sufficient relevance, the IPA system
may ask a user for clarification, for example, “Did you mean
‘Annual_Report_2016.docx’ or
‘Annual_Report_2017.docx’?”

As may now be understood, in traditional NLP intent
determination systems, accurately determining the user’s
intent is key to handling the user command correctly. For
example, if the NLP intent determination system doesn’t
determine the action correctly (i.e., to “Send” something in
example 400 above), the user will not get the expected
response from the system. For example, the system may try
to “Search” for a document named “Annual Report” instead,
or do something else. Even if the user’s intent is interpreted
correctly, the various other attributes and entities in the user
command must be linked to those intents and used by those
intents in the correct way, otherwise, again, the user will not
get the expected response from the system.

Thus, according to some embodiments described herein,
rather than using complex and computationally-expensive
parsing algorithms to perform NLP intent determination (as
is typically currently done in the art), the problem of intent
determination may be reduced to a ‘search-based’ problem.
For example, consider a typical plaintext search. A user
simply types (or speaks) a sentence, phrase, or other utter-
ance that they are interested in searching, it is converted to
text (if necessary), and, if that text exists in the searched
database, the search will return results, e.g., listing the
location of the text string that was searched for, the number
of occurrences of the text string, etc. If so-called “fuzzy
searching” is used, then inexact matches to the input text
string may also be returned and even ranked by relevance,
e.g., based on language models, artificial intelligence, or
other string-matching techniques.

Some search engines use the concept of “documents” to
store their information. A “document” in this context can
refer to any container of text or other bits of information. A
single real-world document, e.g., an Annual Report PDF,
could actually be broken down into many separate and
individual containers in a search database, if so desired.
Documents in a search database can possess various kinds of
metadata information, which can include (but is not limited
to) “Linked_IDs.” For example, an article, a link to the
article, and a transcription of the article can all be stored
separately as documents in the database, but each may be
linked to the same document ID. Other metadata informa-
tion may include data modified, date created, geo-location,
name of creator, etc. The database index may or may not use
all of the metadata information associated with a given
document, but each item that the system wants to be
individually searchable may be stored as a separate docu-
ment.

For example, a search on a document store for the term
“Pizza” may pull back many different kinds of search
results, e.g., a document with the file name “Pizza.pdf,” a
URL link to a file named “pizza_recipes.html,” and a URL
link to an article entitled, “Best Pizza.” Typical plaintext
fuzzy searching rules state that, the closer the match between
the text and the search string, e.g., the more words in

10

15

20

25

30

35

40

45

50

55

60

65

10

common, the more similar the string of characters in the
search string are, etc., the higher the relevancy score for the
search result should be.

Using the example above, every object in the document
store that may be searched upon may also have an arbitrary
amount of metadata embedded in it. This metadata data can
be used for any number of reasons, e.g., to point to a
particular location in memory or on the Internet, to specify
the date/time or location where the file was uploaded, to
specify that a document is part of a search result, etc.

According to some embodiments described herein, the
document’s metadata may also be used to store reference(s)
to system functionality associated with the text string stored
in the document. For example, if the document happens to
store the expression, “Order a Pizza from Dave’s,” then the
“Action_ID” for the OrderPizza command from Dave’s
Pizza’s APl may be stored in the metadata of the document,
e.g., in the form of a tag, thereby indicating that the
particular expression, “Order a Pizza from Dave’s,” is
associated with a particular action that the system know how
to perform (or have performed by a third party service).

Expanding upon this metadata tagging concept, according
to some embodiments, any time that a new command or
“intent” is added to the system, e.g., “Send {item},” or
“Search {item},” etc., the system may generate a desired
number of Natural Language (NL) sentence variants that
effectively mean “Send {item},” or “Search {item},” respec-
tively. In some embodiments, the NL variants for a given
command or “intent” may be machine generated, e.g., using
a language model. Thereby, the system may be able to
generate hundreds—or even thousands—of NI variants
with the same (or similar) meaning to the newly-added
system command or intent in a very short amount of time,
and with relatively minimal computational expense, espe-
cially as compared to the computational overhead generally
associated with traditional natural language parsing tech-
niques. In other embodiments, the system may generate NL
variants of system commands in the background to gradually
grow the depth and value of the document store over time.
Moreover, variants for multiple commands may be gener-
ated simultaneously in parallel to further enhance the effi-
ciency of the variant generation process.

Each of the generated command variants may then be
saved in the aforementioned document store, tagged with an
appropriate Action_ID, and then indexed so that they may be
quickly searched. In addition to, or in place of an Action_ID,
the generated command variants may be tagged with a
Parse_ID, which may be used to point the system to a
particular grammar that knows how to interpret the various
words in the particular command variant. (However, even
with knowledge of the correct grammar to use, the system
will still may have to figure out what is the proper system
action to take.) In some embodiments, the command variants
may be generated at a system-wide level, whereas, for other
embodiments, command variants may be generated in a
customized fashion on a personalized, i.e., per-user, basis.

Referring now to FIG. 4B, an exemplary document store
420 for natural language-generated exemplary user com-
mand variants is shown, according to one or more disclosed
embodiments. In the example shown in FIG. 4B, the newly-
added system command was “Send {item},” wherein {item}
refers to the thing that the user intends to send somewhere
in response to the “Send” command. As discussed above, a
desired number of command variants 425 may be generated
by the system and tagged with an appropriate Action_ID 430
for the particular generated command variant. As shown in
FIG. 4B, the generated command variants may be tagged

US 12,299,016 B2

11

with different Action_IDs, even though they were initially
generated based upon the same seed command (i.e., “Send
{item}”). For example, some of the generated variants may
be associated with the “MSG_SEND” Action_ID for send-
ing communication messages, whereas other generated vari-
ants may be associated with the “ORDER_PIZZA”
Action_ID, which may be for sending pizzas to a customer
address using a particular third party pizza vendor’s API.

Once the document store 420 has been fully created (or
populated to a desired level) and indexed for search,
increased efficiencies may be gained in the process of
determining the intent of a user’s natural language command
or query. In particular, rather than being parsed up front, an
incoming user command or query may be searched against
the document store 420. If the document that is the top
search hit (i.e., the most relevant search results) for the user
command is tagged in its metadata with an Action_ID (as
opposed to a File_ID or some other kind of system ID), then
the system may determine that the user is asking it to
perform a particular action or function, i.e., the function that
is associated with the Action_ID in the metadata of the top
search hit. In this manner, the system may be said to be
‘search-based,” rather than ‘parse-based,” i.e., because it is
using a search index, and not a parsing tree, to find out that
the user command query is, in fact, actually a command to
the system to perform an action or function (and not a
reference to a file or document or other system asset).

As mentioned above, the notion of fuzzy searching may
be used when searching the user command against the
document store. The goal of fuzzy searching is to score each
imperfect search result for relevance, such that the most
likely match to the search query is returned as the most
relevant search result. Returning to the example of FIG. 4A,
the exemplary user command 400, “Send the Annual Report
Document to Bob,” may not match exactly to any of the
hundreds (or thousands) of generated documents in the
document store 420, but it may match with fairly high
relevance to the particular generated document 425 storing
the sentence of: “Send a response to Jim,” which may
already have been linked to the correct Action_ID in the
system of “MSG_SEND.” There may also be less relevant
generated documents, e.g., “Let me know when it is sent.”
Some generated documents may actually link to a different
ActionID than the most relevant result. For example, one
“send”-based Action_ID (e.g, “MSG_SEND”) may go to a
message service, and one may go to Dave’s Pizza (e.g.,
“ORDER_PIZZA”). In other words, the same command
trigger word “Send” could result in different system func-
tionality, so each trigger word has to be considered in the
context of the full user command. The more complex a
system is, and the more capabilities it has, the more complex
the Action_ID mapping for the system is going to be.

In some embodiments, the generated command variants
may be stored in the same document store in which the
system has already stored and indexed each document, file,
message, and other asset associated with the user. Obviously,
not all of these other assets may necessarily be tagged with
Action_IDs or Parse_IDs in their metadata. However, in
some cases, e.g., a text message that a user sent a week ago
with the words, “Send Bob the document” in it may be a
closer textual match to an incoming user command of “Send
the Annual Report Document to Bob.” A document in the
document store relating to a previously sent message would
not necessarily be associated with a system Action_ID
because it is simply a record of a sent message—and not a
command to the system to do some action at the present
time. In such a case, then, the previous text message the user

25

30

35

40

45

50

55

12

had sent including the words, “Send Bob the document” may
turn out to be the most relevant search result to the user’s
query, indicating that the user is not asking the system to
perform an action at this time, but is, in fact, asking a
question about the previously-sent text message or attempt-
ing to read or retrieve the previously-sent text message. In
other embodiments, the system may utilize separate docu-
ment stores, e.g., one to store the user’s documents, files,
messages, and other assets, and one to store the generated
command variants. In such embodiments, the search could
be enabled by using two separate search indexes working in
parallel (i.e., one over the user’s assets, and one over the
generated command variants), with both doing the search at
the same time and combining the search results after for a
post-processing step.

Referring now to FIG. 4C, a block diagram illustrating an
indexed search 435 of an exemplary user command 400
against a document store 420 of natural language-generated
exemplary user command variants is shown, according to
one or more disclosed embodiments. In the example of FIG.
4C, the search results 440 are broken down into three
categories (though this is merely exemplary): Most Relevant
Search Results (450), having a search relevancy score of
greater than 80%; Moderately Relevant Search Results
(460), having a search relevancy score of greater than 50%
and less than 79%; and Less Relevant Search Results (470),
having a search relevancy score of less than 50%. In the
example of FIG. 4C, the search result 455 (“Send a
Response to Jim.”) may be identified as the most relevant
search hit result to the search command 400 of “Send the
Annual Report Document to Bob.” In some embodiments, if
there is more than one search results with greater than a
threshold level of relevance (e.g., a 97% relevance score),
the IPA may generate a prompt asking the user to resolve
which of the actions associated with the two or more
highly-relevant search results is more aligned with the user’s
current desired intent. For example, the IPA may prompt the
user as follows: “Did you mean to 1.) Send a document
named “Annual Report” to Bob; or 2.) Send a message to
Bob having the text, ‘the Annual Report Document’?”” Once
the user resolves his or her intent, the system may take the
appropriate action or sequence of actions.

As described above, the most relevant search result 455
may already have been tagged in its metadata that it is
associated with a particular Action _ID, such as
“MSG_SEND.” Thus, at this point, the IPA system could
adjudge that the user is asking the system to perform a
function, namely, the sending of a message, rather than
searching for or opening a file or document called “Annual
Report.” Further, the search result 455 may also contain a
pointer to a particular grammar for the system to use to parse
the generated command (in this case, the sentence: “Send a
Response to Jim.”). Due to the textual similarity between the
search query and the most relevant search result 455, this is
likely to be a grammar that may also be used to parse the
search query. By giving the system a command that it
already knows how to parse up front (e.g., via one of the
generated commands), computational efficiencies may be
gained as compared to systems wherein the system has to
figure out how to parse an incoming user command or query
from scratch.

In cases where no generated document in the document
store matches the incoming command query at greater than
a threshold relevancy level, the system may simply default
to the method of spending the computational resources to
attempt to parse the command up front. However, if there is

US 12,299,016 B2

13

no significant match with the document store, it is likely that
the system will not even know how to handle the incoming
command.

NLP Intent Determination Service (IDS) System

Referring now to FIG. 5, one embodiment of a Universal
Interaction Platform (UIP) 500 including a search-based
NLP Intent Determination Service (IDS) system is illus-
trated in further detail, according to one or more disclosed
embodiments. The UIP 500 includes a messaging service
520, an IoT (Internet of Things) service 530, and an Intent
Determination Service (IDS) 540. The IoT service 530 may
include a number of individual IoT handlers 532. In this
disclosure, an IoT handler may, e.g., be implemented as a
software program or sub-program within the centralized
communication system that directly interfaces with an
autonomous, connected device that is, e.g., capable of spe-
cialized data collection, processing, and/or action. Examples
of connected devices include, e.g., smart thermostats, smart
televisions, IP-enabled cameras, home automation hubs, etc.
The messaging service 520, the IoT service 530, the loT
handlers 532, and the IDS 540 may be implemented as
software modules stored on the storage device 122 and
executed by the server 121.

The messaging service 520 sends and receives messages
to and from the client devices 130 (e.g., as composed via
user interfaces, such as exemplary user interface 305,
described above). The messaging service 520 also commu-
nicates with the third-party communications devices 140 as
described, for example, in the various commonly-assigned
patent applications, which are referenced above and incor-
porated by reference.

The IoT service 530 includes an IoT handler 532 for each
service provider or smart device 160 supported by the
platform 500. Each IoT handler 532 may interact with a
particular service provider or type (e.g., brand, model, etc.)
of smart device 160. For example, loT handler 532a may
interact with a smart television, while loT handler 532/ may
interact with a different type of device, such as a smart
thermostat.

The API-Enabled Service Handler 534 may, e.g., be
implemented as a software program or sub-program within
the centralized communication system that directly inter-
faces with a third-party service (170q) that is made acces-
sible using available APIs to perform specific functions that
the corresponding service is able to perform, such as order-
ing a car from a ride sharing service. According to some
embodiments, API-Enabled Service Handler 534 may be
adapted using the various processes set forth in the 157
application.

The Web-Enabled Service Handler 536 may, e.g., be
implemented as a software program or sub-program within
the centralized communication system that directly inter-
faces with a third-party product or service (180a) that is only
made available via generic web connectivity, typically in the
form of informational data, such as a website, online data-
base, etc. According to some embodiments, Web-Enabled
Service Handler 536 may be adapted using the various
processes set forth in the 157 application.

In some instances, the UIP 500 may receive an indication
from the user of precisely which service provider, smart
device, etc. a given command or query should be sent to. For
example, if a user is in an email application and says or types
the command “Send Email” (or clicks on a “Send Email”
button), then the currently active email message should be
sent by the system using the system’s native emailing
functionality. In such instances, the IDS 540 may not need
to be engaged by the UIP 500. By contrast, in some

10

15

20

25

30

35

40

45

50

55

60

65

14

instances, the UIP 500 may receive a ‘generic’ command or
query from the user of the device via the IPA, ie., a
command or query that is not specifically directed to a
particular smart device 160 or service provider device 150.
For example, “Send the Annual Report document to Bob.”
may be a command that could theoretically be handled by
various service endpoints known to the system. In instances
of “‘generic’ commands or queries being received by the UIP
400, the IDS 540 may be engaged in order to attempt to
determine the true intent of the user’s command or query.
The IDS 540 may be comprised of various components that
are ultimately used to intercept and interpret ‘generic’
commands or queries from the user of the device using an
indexed search-based process rather than a Natural Lan-
guage parsing-based process.

As described above, the IDS 540 may comprise several
components. First, a Command Registry 550 may be used to
store a list of every command that the system is capable of
handling. Examples of common commands may include
action verbs, such as: “Search,” “Order,” “Send,” “Com-
pose,” etc. The Command Registry 550 may feed into a
Natural Language Generator 560. The Natural Language
Generator 560 may then be used to generate, for each
command in the Command Registry 550, a desired number
of variants of sentences or commands that relate to the given
command. As mentioned above, a neural network or other
machine learning application may be used to automatically
generate further command variants. In some embodiments,
the Natural Language Generator 560 may be working in the
background, i.e., even when the system is idle or not
currently processing a user command, to generate more and
more command variants.

The output of the Natural Language Generator 560 may
then be feed into the aforementioned document store 420. As
mentioned above, each generated sentence or command
variant may be stored as an individual document in the
document store, and may be tagged with any relevant
metadata information, including an associated Action_ID or
Parse_ID. A document store search index 570 may then be
created to allow for rapid searching of incoming user
commands against the document store 420. Finally, each of
the Action_IDs known to the system may be stored in an
Action Registry 580. Action Registry 580 may serve as a
simple lookup table that links given Action_IDs to the
particular native or third-party API calls that the system
needs to make (and, perhaps, the sequence thereof) in order
to execute the particular system action. Once the IDS 540
has determined what action the system needs to take (if it
needs to take any action) in response to the current user
command or query, the IDS 540 may interface with the IOT
Service 530, or the appropriate Service Handler 534/536 to
effect the user’s desired action, e.g., by making an appro-
priate API call and sending the appropriate parameters to the
appropriate service endpoint. Alternately, if the user’s
desired action may be handled natively by the system
without interfacing with a third-party endpoint, the IDS 540
may simply initiate the appropriate API call (or series of API
calls) to effect the user’s desired system action(s).

FIG. 6A shows a flowchart 600 of a method for estab-
lishing an NLP Intent Determination Service, according to
one or more disclosed embodiments. First, at Step 602, the
method 600 may create a command registry based on the
current system capabilities. As described above, the Com-
mand Registry 550 may comprise a listing of all commands
the system is currently capable of responding to. Next, the
method 600 may establish an Action Registry 604 based on
the current system capabilities. The Action Registry 580

US 12,299,016 B2

15

may comprise a listing of all actions the system is currently
capable of “doing.” As described above, the action registry
may be far larger than the command registry as, there may
be, for example, more than 20 different API actions in the
system related to the command: “Send.” Each unique
Action_ID stored in the Action Registry, then, may pertain
to a particular send method or send protocol that is imple-
mented by a particular native or third-party service acces-
sible to the system.

Next, at Step 606, the method 600 may use a generator,
e.g., a Natural Language (NL) generator, to generate a
desired number of command variants for each command
stored in the Command Registry 550. Next, at Step 608, the
method 600 may tag each command variant with the desired
metadata, e.g., the corresponding Action_ID from one of the
actions stored in Action Registry 580, and all tagged com-
mand variants may be stored in a document store 420 (Step
610). Finally, a search index may be created for the docu-
ment store (Step 612). Once the various components of
method 600 have been initialized and established within the
system, the system may perform search-based NLP intent
determination on incoming user commands, e.g., by per-
forming ‘fuzzy’ searches of the incoming user command
against the indexed document store to determine the most
relevant matching documents (and, by extension, the most
likely to be relevant system Action_IDs) (Step 614). As
described above, in some embodiments, the document store
may also contain all of a user’s assets (e.g., messages, files,
photos, contacts, etc.), in addition to all the system-gener-
ated command variants based on the Command Registry
550. In such embodiments, the most relevant matching
document in the document store may not be associated with
an Action_ID, in which case the IDS may determine that the
user is not currently commanding the system to perform an
action, but rather may be attempting to view a file, search for
a previously sent message, etc.

FIG. 6B shows a flowchart 620 for a search-based NLP
Intent Determination method for determining the appropri-
ate action for an IPA to take in response to a generic user
command, according to one or more disclosed embodiments.
First, at Step 622, the method 620 may activate a universal
messaging box. The universal messaging box may take the
form of a graphical box into which a user may enter textual
or verbal commands. In other embodiments, the system’s
IPA may always be ‘listening’ for user commands or queries
(e.g., in response to the user reciting a unique IPA activation
phrase), and thus not need to be messaging box that is
specifically activated, e.g., via clicking on a user interface
button, such as IPA activation button 310 of FIG. 3. Once the
IPA is “listening’ for user input, at Step 624, the user may
proceed to compose a ‘generic’ query addressed to the IPA,
i.e., a query that is not specifically directed to a particular
service endpoint. If, at Step 626, the query is successfully
sent to the system’s central communication server (i.e.,
“YES” at Step 626), the method may proceed to Step 628 for
further processing. If, instead, the query is not successfully
sent to the system’s central communication server for any
reason (i.e., “NO” at Step 626), the method may return to
Step 622 and allow the user to attempt to resubmit the query.

At Step 628, the central communication server may
receive the generic query, e.g., in the form of a universal
messaging object or other data structure that the system uses
for transmitting information. At Step 630, the method may
run a search of the command or query embedded in the
messaging object against a previously established document
store search index, wherein the document store contains
generated command variants that are tagged with associated

10

15

20

25

30

35

40

45

50

55

60

65

16
system Action_IDs and/or Parse_IDs. At Step 632, the
search results may be ranked by relevance, e.g., according to
the level of similarity between the command or query being
searched and the individual document in the document store.

At Step 634, if the result of the searching and ranking
processes of Steps 630 and 632, respectively, is that a single
search result has been identified with greater than a thresh-
old level of relevance (i.e., “YES” at Step 634), the process
may proceed to select the single identified search result
(Step 636) and then execute the identified action(s) and/or
parse(s) associated with the selected search result (Step
638), assuming there is an identified action or parsing
grammar known to the system. Running the identified action
using the selected service may comprise, e.g.: calling the a
particular third-party service’s APl with the appropriate
parameters as extracted from the generic query message
object according to a known parsing grammar; executing the
identified action internally (i.e., without making a call to an
external service); performing a search; performing a calcu-
lation operation; etc. If there is no particular identified action
associated with the selected search result, the system may
simply find or return the appropriate information requested
by the generic query.

If, instead, at Step 634, the result of the searching and
ranking processes of Steps 630 and 632, respectively, is that
multiple search results (or no search results) have been
identified as having greater than a threshold level of rel-
evance (i.e., “NO” at Step 634), the process may proceed to
Step 640 and generate an Artificial Intelligence-derived
response asking the user for clarification between the mul-
tiple identified search results (or the lack of identified search
results). For example, with respect to the send message
example described above, the system may generate a
response at Step 640, such as: “Would you like to send the
message using your default email account or your preferred
social media account?” Alternatively, if no services are
identified, the system may generate a generic response at
Step 640, such as: “Which service would you like to use to
complete this query?”

At Step 642, the method receives the users selected search
result (or service), and then proceeds to Step 638 to execute
the identified action(s) action(s) associated with the selected
search result, as described above. Once the generic query
has been executed, the process of method 600 may end, and
the user’s device may go back to listening for the next
generic query from the user, so that the process may begin
again at Step 622 of FIG. 6B.

EXAMPLES

The following examples pertain to further embodiments.
Example 1 is a computer-implemented method, compris-
ing: creating a command registry, wherein each item in
the command registry represents a command that an
Intelligent Personal Assistant (IPA)-enabled system is
able to process; creating an action registry, wherein
each item in the action registry represents an action that
the IPA-enabled system is able to have performed;
generating a plurality of command variants for each
item in the command registry; storing each of the
generated command variants as documents in a docu-
ment store; tagging at least one of the stored command
variants with an identification of at least one action
from the action registry; receiving a first command
from a user; executing a search of the first command
against the documents in the document store; determin-
ing a first plurality of search results based on the search

US 12,299,016 B2

17

of the document store, wherein each search result in the
first plurality of search results is associated with a
relevance score; selecting at least one search result
from the first plurality of search results based, at least
in part, on its respective relevance score; obtaining an
identification of at least one action that the selected at
least one search result has been tagged with; and
causing the IPA-enabled system to have the identified
at least one action performed.

Example 2 includes the subject matter of example 1,
wherein the first command is not explicitly directed to
a particular service provider or smart device.

Example 3 includes the subject matter of example 1,
further comprising: creating a search index for the
document store.

Example 4 includes the subject matter of example 1,
wherein the document store further comprises one or
more documents, messages, or files of the user.

Example 5 includes the subject matter of example 1,
further comprising: tagging at least one of the stored
command variants with an identification of at least one
parsing grammar known to the IPA-enabled system.

Example 6 includes the subject matter of example 5,
wherein the [PA-enabled system is configured to use
the at least one known parsing grammar to parse the at
least one stored command variant that has been tagged
with the identification of at least one parsing grammar.

Example 7 includes the subject matter of example 1,
wherein selecting at least one search result from the
first plurality of search results based, at least in part, on
its respective relevance score further comprises: receiv-
ing a selection from the user of a first one of the search
results from among two or more search results having
greater than a predetermined threshold level of rel-
evancy.

Example 8 includes the subject matter of example 1,
wherein the act of generating the plurality of command
variants is performed in parallel for two or more of the
commands in the command registry.

Example 9 is a non-transitory computer readable storage
medium comprising computer executable instructions
stored thereon to cause one or more processing units to:
create a command registry, wherein each item in the
command registry represents a command that an Intel-
ligent Personal Assistant (IPA)-enabled system is able
to process; create an action registry, wherein each item
in the action registry represents an action that the
IPA-enabled system is able to have performed; generate
a plurality of command variants for each item in the
command registry; store each of the generated com-
mand variants as documents in a document store; tag at
least one of the stored command variants with an
identification of at least one action from the action
registry; receive a first command from a user; execute
a search of the first command against the documents in
the document store; determine a first plurality of search
results based on the search of the document store,
wherein each search result in the first plurality of search
results is associated with a relevance score; select at
least one search result from the first plurality of search
results based, at least in part, on its respective relevance
score; obtain an identification of at least one action that
the selected at least one search result has been tagged
with; and cause the IPA-enabled system to have the
identified at least one action performed.

10

15

20

25

30

35

40

45

50

55

60

65

18

Example 10 includes the subject matter of example 9,
wherein the first command is not explicitly directed to
a particular service provider or smart device.

Example 11 includes the subject matter of example 9,
further comprising instructions stored thereon to cause
the one or more processing units to: create a search
index for the document store.

Example 12 includes the subject matter of example 9,
wherein the document store further comprises one or
more documents, messages, or files of the user.

Example 13 includes the subject matter of example 9,
further comprising instructions stored thereon to cause
the one or more processing units to: tag at least one of
the stored command variants with an identification of at
least one parsing grammar known to the IPA-enabled
system.

Example 14 includes the subject matter of example 13,
wherein the IPA-enabled system is configured to use
the at least one known parsing grammar to parse the at
least one stored command variant that has been tagged
with the identification of at least one parsing grammar.

Example 15 includes the subject matter of example 9,
wherein the instructions to select at least one search
result from the first plurality of search results based, at
least in part, on its respective relevance score further
comprise instructions to cause the one or more pro-
cessing units to: receive a selection from the user of a
first one of the search results from among two or more
search results having greater than a predetermined
threshold level of relevancy.

Example 16 includes the subject matter of example 9,
wherein the instructions to generate the plurality of
command variants are executed by the one or more
processing units in parallel for two or more of the
commands in the command registry.

Example 17 is Intelligent Personal Assistant (IPA)-en-
abled system, comprising: a display; a memory; and
one or more processing units, communicatively
coupled to the memory, wherein the memory stores
instructions configured to cause the one or more pro-
cessing units to: create a command registry, wherein
each item in the command registry represents a com-
mand that the system is able to process; create an action
registry, wherein each item in the action registry rep-
resents an action that the system is able to have
performed; generate a plurality of command variants
for each item in the command registry; store each of the
generated command variants as documents in a docu-
ment store; tag at least one of the stored command
variants with an identification of at least one action
from the action registry; receive a first command from
a user; execute a search of the first command against
the documents in the document store; determine a first
plurality of search results based on the search of the
document store, wherein each search result in the first
plurality of search results is associated with a relevance
score; select at least one search result from the first
plurality of search results based, at least in part, on its
respective relevance score; obtain an identification of at
least one action that the selected at least one search
result has been tagged with; and cause the system to
have the identified at least one action performed.

Example 18 includes the subject matter of example 17,
wherein the first command is not explicitly directed to
a particular service provider or smart device.

Example 19 includes the subject matter of example 17,
wherein the instructions are further configured to cause

US 12,299,016 B2

19

the one or more processing units to: create a search
index for the document store.

Example 20 includes the subject matter of example 17,
wherein the document store further comprises one or
more documents, messages, or files of the user.

Example 21 includes the subject matter of example 17,
wherein the instructions are further configured to cause
the one or more processing units to: tag at least one of
the stored command variants with an identification of at
least one parsing grammar known to the system.

Example 22 includes the subject matter of example 21,
wherein the system is configured to use the at least one
known parsing grammar to parse the at least one stored
command variant that has been tagged with the iden-
tification of at least one parsing grammar.

Example 23 includes the subject matter of example 17,
wherein the instructions to select at least one search
result from the first plurality of search results based, at
least in part, on its respective relevance score further
comprise instructions configured to cause the one or
more processing units to: receive a selection from the
user of a first one of the search results from among two
or more search results having greater than a predeter-
mined threshold level of relevancy.

Example 24 includes the subject matter of example 17,
wherein the instructions to generate the plurality of
command variants are executed by the one or more
processing units in parallel for two or more of the
commands in the command registry.

Example 25 includes the subject matter of example 17,
wherein the plurality of generated command variants
are personalized for the user.

It is to be understood that the above description is
intended to be illustrative, and not restrictive. For example,
above-described embodiments may be used in combination
with each other and illustrative process steps may be per-
formed in an order different than shown. Many other
embodiments will be apparent to those of skill in the art
upon reviewing the above description. The scope of the
invention therefore should be determined with reference to
the appended claims, along with the full scope of equivalents
to which such claims are entitled.

What is claimed is:

1. A computer-implemented method, comprising:

detecting, by a computing device, a voice command
having a natural language dialogue from a user;

determining an input text string for the natural language
dialogue from the voice command;

executing a search of a document store of commands
issuable by the computing device using the input text
string, wherein the document store of commands
includes one or more inexact matches to the input text
string;

identifying, based on the executed search, document
metadata for a plurality of search results ranked from
the one or more inexact matches, wherein the plurality
of search results identify at least one of an action or a
grammar usable for parsing the voice command for a
user intent;

parsing the voice command using the plurality of search
results and natural language processing (NLP);

determining, using a machine learning (ML) model, the
user intent for the voice command based on the parsing
and a previous voice command by the user;

determining a plurality of actions capable of being
executed by the computing device within a threshold
distance to the computing device;

5

10

15

20

25

30

40

45

55

65

20

selecting one of the plurality of actions for execution by
the computing device based on the user intent; and

executing, by the computing device, one or more appli-
cation programming interface (API) calls that cause the
computing device to perform the one of the plurality of
actions within the threshold distance.

2. The computer-implemented method of claim 1,
wherein the voice command comprises a sentence, a phrase,
or an utterance, and wherein the document store of com-
mands comprises operations executable in response to at
least one of a user input, text converted from spoken words,
audio data, video data, or a search query.

3. The computer-implemented method of claim 1,
wherein, prior to the determining the user intent, the com-
puter-implemented method further comprises:

determining one or more command variants for the input

text string from the voice command; and

executing an additional search of the document store of

commands for the input text string using the one or
more command variants as an additional parameter of
the search.

4. The computer-implemented method of claim 3,
wherein the determining the one or more command variants
comprises:

determining at least one command in the document store

of commands tagged in association with the voice
command or the input text string; and

varying words in the input text string based on corre-

sponding text strings associated with the at least one
command.

5. The computer-implemented method of claim 1,
wherein the selecting one of the plurality of actions uses at
least one of an applied language model, an artificial intel-
ligence model, or a string-matching technique, and wherein
the selecting is further based on a ranking of corresponding
relevance scores for the plurality of actions.

6. The computer-implemented method of claim 5,
wherein the selecting the one of the plurality of actions
comprises requesting that the user resolve which of at least
two of the plurality of actions corresponds to the voice
command, and wherein the computer-implemented method
further comprises:

updating the at least one of the applied language model,

the artificial intelligence model, or the string-matching
technique based on the one of the plurality of actions
selected from the at least two of the plurality of actions.
7. The computer-implemented method of claim 1,
wherein, prior to the executing the search, the computer-
implemented method further comprises:
identifying at least one of a part of speech of the voice
command, a meaning of the voice command, or seman-
tics between one or more words in the input text string,

wherein the search is further executed based on the at least
one of the part of speech, the meaning, or the seman-
tics.

8. The computer-implemented method of claim 1,
wherein the voice command is received via one of a mes-
saging service, an Internet of Things (IoT) sensor associated
with the computing device, an intent determination service
(IDS), or a software program implemented with the com-
puting device.

9. A system comprising:

a non-transitory memory; and

one or more hardware processors coupled to the non-

transitory memory and configured to read instructions
from the non-transitory memory to cause the system to
perform operations comprising:

US 12,299,016 B2

21

detecting, by an Internet-of-Things (IoT) device, a
voice command having a natural language dialogue
from a user;

determining an input text string for the natural language
dialogue from the voice command;

executing a search of a document store of commands
issuable by the IoT device using the input text string,
wherein the search includes one or more inexact
matches to the input text string;

identifying, based on the executed search, document
metadata for a plurality of search results ranked from
the one or more inexact matches, wherein the plu-
rality of search results identify at least one of an
action or a grammar usable for parsing the voice
command for a user intent;

parsing the voice command using the plurality of
search results and a natural language processing
(NLP) system;

determining, using a machine learning (ML) model, a
user intent for the voice command based on the
parsing and a previous voice command by the user;

determining a plurality of actions capable of being
executed by the IoT device in an environment of the
IoT device;

selecting one of the plurality of actions for execution by
the IoT device based on the user intent and the
plurality of actions; and

executing, by the IoT device, one or more application
programming interface (API) calls that effectuate the
one of the plurality of actions by the IoT device.

10. The system of claim 9, wherein the voice command
comprises a sentence, a phrase, or an utterance, and wherein
the document store of commands comprises operations
executable in response to at least one of a user input, text
converted from spoken words, audio data, video data, or a
search query.

11. The system of claim 9, wherein, prior to the deter-
mining the user intent, the operations further comprise:

determining one or more command variants for the input

text string from the voice command; and

executing an additional search of the document store of

commands for the input text string using the one or

more command variants as an additional parameter of
the search.

12. The system of claim 11, wherein the determining the
one or more command variants comprises:

determining at least one command in the document store

of commands tagged in association with the voice

command or the input text string; and

varying, by a natural language processor, words in the

input text string based on corresponding text strings

associated with the at least one command.

13. The system of claim 9, wherein the selecting one of
the plurality of actions uses at least one of an applied
language model, an artificial intelligence model, or a string-
matching technique, and wherein the selecting is further
based on a ranking of corresponding relevance scores for the
plurality of actions.

14. The system of claim 13, wherein the selecting the one
of the plurality of actions comprises requesting that the user
resolve which of at least two of the plurality of actions is
aligned with the voice command, and wherein the operations
further comprise:

updating the at least one of the applied language model,

the artificial intelligence model, or the string-matching

technique based on the one of the plurality of actions
selected from the at least two of the plurality of actions.

5

15

20

25

30

35

40

45

65

22

15. The system of claim 9, wherein, prior to the executing
the search, the operations further comprise:
identifying at least one of a part of speech of the voice
command, a meaning of the voice command, or seman-
tics between one or more words in the input text string,

wherein the search is further executed based on the at least
one of the part of speech, the meaning, or the seman-
tics.

16. The system of claim 9, wherein the voice command is
received via one of a messaging service, an Internet of
Things (IoT) sensor associated with the IoT device, an intent
determination service (IDS), or a software program imple-
mented with the IoT device.

17. A non-transitory computer-readable medium having
stored thereon instructions executable by a computer system
to cause the computer system to perform operations com-
prising:

detecting, by a computing device, a voice command

having a natural language dialogue from a user;
determining an input text string for the natural language
dialogue from the voice command;

executing a search of a document store of commands

issuable by the computing device using the input text
string, wherein the search includes one or more inexact
matches to the input text string;

identifying, based on the executed search, document

metadata for a plurality of search results ranked from
the one or more inexact matches, wherein the plurality
of search results identify at least one of an action or a
grammar usable for parsing the voice command for a
user intent;

parsing the voice command using the plurality of search

results and a natural language processing (NLP) sys-
tem;
determining, using a machine learning (ML) model, a user
intent for the voice command based on the parsing and
a previous voice command by the user;

determining a plurality of actions capable of being
executed by the computing device within a threshold
distance of the computing device;
selecting one of the plurality of actions for execution by
the computing device based on the user intent; and

executing, by the computing device, one or more appli-
cation programming interface (API) calls that cause the
computing device to perform the one of the plurality of
actions within the threshold distance.

18. The non-transitory computer-readable medium of
claim 17, wherein the voice command comprises a sentence,
a phrase, or an utterance, and wherein the document store of
commands comprises operations executable in response to at
least one of a user input, text converted from spoken words,
audio data, video data, or a search query.

19. The non-transitory computer-readable medium of
claim 17, wherein, prior to the determining the user intent,
the operations further comprise:

determining one or more command variants for the input

text string from the voice command; and

executing an additional search of the document store of

commands for the input text string using the one or
more command variants as an additional parameter of
the search.

20. The non-transitory computer-readable medium of
claim 19, wherein the determining the one or more com-
mand variants comprises:

determining at least one command in the document store

of commands tagged in association with the voice
command or the input text string; and

US 12,299,016 B2
23

varying words in the input text string based on corre-
sponding text strings associated with the at least one
command.

24

	Front Page
	Drawings
	Specification
	Claims

