az United States Patent

Ghafourifar et al.

US012242905B2

ao) Patent No.:  US 12,242,905 B2
(45) Date of Patent: *Mar. 4, 2025

(54)

(71)

(72)

(73)

4y

(22)

(65)

(63)

(51)

(52)

AUTOMATIC APPLICATION PROGRAM
INTERFACE (API) SELECTOR FOR
UNSUPERVISED NATURAL LANGUAGE
PROCESSING (NLP) INTENT
CLASSIFICATION

Applicant: Entefy Inc., Palo Alto, CA (US)

Inventors: Alston Ghafourifar, Los Altos Hills,
CA (US); Mehdi Ghafourifar, Los
Altos Hills, CA (US); Brienne
Ghafourifar, Los Altos Hills, CA (US)

Assignee: Entefy Inc., Palo Alto, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 18/589,285
Filed:  Feb. 27, 2024

Prior Publication Data

US 2024/0281312 Al Aug. 22, 2024

Related U.S. Application Data

Continuation of application No. 16/889,613, filed on
Jun. 1, 2020, now Pat. No. 11,948,023, which is a

(Continued)
Int. CL.
GO6F 9/54 (2006.01)
GO6F 9/451 (2018.01)
GO6F 40/30 (2020.01)
U.S. CL
CPC ....c..... GOG6F 9/547 (2013.01); GO6F 9/453

(2018.02); GOGF 9/543 (2013.01); GO6F

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,481,597 A 1/1996 Given
5,951,638 A 9/1999 Hoss

(Continued)

FOREIGN PATENT DOCUMENTS

WO 9931575 6/1999
WO 2013112570 Al 8/2013

OTHER PUBLICATIONS

Guangyi Xiao et al., “User Interoperability With Heterogeneous IoT
Devices Through Transformation,” pp. 1486-1496, 2014.

Primary Examiner — Chat C Do
Assistant Examiner — William C Wood
(74) Attorney, Agent, or Firm — Haynes and Boone, LLP

(57) ABSTRACT

Improved intelligent personal assistant (IPA) software
agents are disclosed that are configured to interact with
various people, service providers, files, and/or smart
devices. More particularly, this disclosure relates to an
improved Natural Language Processing (NLP) Intent Deter-
mination Service (IDS) that is able to determine the likely
best action to take in response to generic user commands and
queries. The disclosed NLP IDS automatically selects valid
(or potentially valid) API paths (e.g., sequence of API calls)
to produce desired actions. Associated system actions and
known API sequencing rules may then be used to process the
incoming user command or query. A feedback loop is also
disclosed to identify newly available APIs and success
criteria for selected API paths. Discovery of API paths may
be performed using predefined information, monitored
information, programmatically determined interfaces, and

40/30 (2020.01) (Continued)
MEHORY/DATA STORE(S) 145 WETWORK BASED &7 “
{£G., WEB SERVICES, 30
ACQUIRED DATA GENERATED THIRD PARTY
ASSOCATED wirh | PAOBABILITY DATA > RESOURCES)
A USER ACTWITY B “APY PROBABILITY 340 USER DEVCE(S)
Bt GRAPHT 5
330
COMMUNICATION
NE(HANISM(S}
PROCESSING UNT(S) 345 i
NLP INTENT PROCESSING LOGIC/ NETWORK-CONNECTED
HODULES APE PROCESSING SERWCE(S) (E.G, 4PI DEVICE(S)
4 PROBABILITY HAINTENANCE, DETECTION, (EG.. INTERNET OF THINGS
GENERATION AKD CONMAND PROCESSING (10T DEVICE(S), OTHER
MONITOR PROCESSING LOGIC/MODULES FUNCTIONS } PROGRAMMABLE DEWCE(S),
il o £IC)
3%
GENERATED DATA PROCESSING LOGIE/
moowies ] j e #f T
it




US 12,242,905 B2

Page 2

programmatically tested interfaces. A directed graph model

may be used to represent potential API paths.

Related U.S. Application Data

14 Claims, 9 Drawing Sheets

continuation of application No. 15/859,183, filed on
Dec. 29, 2017, now abandoned.

(56)

6,101,320
6,950,502
7,450,937
7,673,327
7,886,000
7,908,647
8,090,787
8,095,592
8,108,460
8,112,476
8,122,080
8,156,183
8,281,125
8,296,360
8,433,705
8,438,223
8,458,256
8,458,292
8,458,347
8,468,202
8,954,988
8,959,156
2002/0133509
2002/0152091
2002/0178000
2002/0194322
2004/0117507
2004/0137884
2004/0243719
2004/0266411
2005/0015443
2005/0080857
2005/0198159
2006/0041423

U.S. PATENT DOCUMENTS

A

Bl
Bl
Bl
Bl
Bl
B2
B2
B2
B2
B2
B2
Bl
B2
Bl
B2
B2
B2
B2
B2
Bl
B2
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

References Cited

8/2000
9/2005
11/2008
3/2010
2/2011
3/2011
1/2012
1/2012
1/2012
2/2012
2/2012
4/2012
10/2012
10/2012
4/2013
5/2013
6/2013
6/2013
6/2013
6/2013
2/2015
2/2015
9/2002
10/2002
11/2002
12/2002
6/2004
7/2004
12/2004
12/2004
1/2005
4/2005
9/2005
2/2006

Schuetze
Jenkins
Claudatos
Polis
Polis
Polis
Polis
Polis
Polis
Polis
Polis
Polis
Briceno
Polis
Dredze
Polis
Polis
Polis
Polis
Polis
Laredo
Polis
Johnston
Nagaoka
Aktas
Nagata
Torma
Engstrom
Roselinsky
Galicia
Levine
Kirsch
Kirsch
Kline

2006/0193450
2007/0054676
2007/0130273
2007/0237135
2008/0062133
2008/0088428
2008/0261569
2009/0016504
2009/0119370
2009/0177744
2009/0181702
2009/0271486
2009/0292814
2009/0299996
2010/0057872
2010/0210291
2010/0220585
2010/0229107
2010/0323728
2010/0325227
2011/0051913
2011/0078247
2011/0130168
2011/0194629
2011/0219008
2012/0016858
2012/0209847
2012/0210253
2012/0221962
2013/0018945
2013/0024521
2013/0097279
2013/0151508
2013/0262852
2013/0267264
2013/0304830
2013/0332308
2014/0270131
2014/0280460
2014/0297807
2015/0039887
2015/0186455
2015/0278370
2015/0281184
2015/0286747
2015/0286943
2016/0057207
2016/0087944
2016/0379136
2017/0220963
2017/0286155

8/2006
3/2007
6/2007
10/2007
3/2008
4/2008
10/2008
1/2009
5/2009
7/2009
7/2009
10/2009
11/2009
12/2009
3/2010
8/2010
9/2010
9/2010
12/2010
12/2010
3/2011
3/2011
6/2011
8/2011
9/2011
1/2012
8/2012
8/2012
8/2012
12013
12013
4/2013
6/2013
10/2013
10/2013
112013
12/2013
9/2014
9/2014
10/2014
2/2015
7/2015
10/2015
10/2015
10/2015
10/2015
2/2016
3/2016
12/2016
8/2017
10/2017

Flynt
Duan
Huynh
Trevallyn-Jones
Wolf
Pitre

Britt
Mantell
Stern
Marlow
Vargas
Ligh

Ting

Yu

Koons
Lauer
Poulson
Turner
Gould
Novy
Kesler
Jackson
Vendrow
Bekanich
Been
Rathod
Rangan
Luna
Lew
Vendrow
Pocklington
Polis
Kurabayashi
Roeder
Abuelsaad
Olsen
Linden
Hand
Nemer
Dasgupta
Kahol
Horling
Stratvert
Cooley
Anastasakos
Wang

Li
Downey
Chen
Canaran
Hosabettu



US 12,242,905 B2

Sheet 1 of 9

Mar. 4, 2025

U.S. Patent

1IAYIS
4IM

N3]

DINYIS
4V

\1

O

\Y

o

%

051

0¥l



U.S. Patent Mar. 4, 2025 Sheet 2 of 9 US 12,242,905 B2

/—200
/—225 /—205

/
10
——
B;/ PosTIoNAL || o
INPUT INPUT/ SENSOR(S)
OlllgTUPSUT — //—2|5
DISPLAY NerwoRk 1 | /—220
235 l I 40

FIG. 2A



U.S. Patent Mar. 4, 2025 Sheet 3 of 9 US 12,242,905 B2

lCODE N 350
I MEMORY 215
|
|
|
| !
: FRONT END
|
: DECODER(S) N 370
|
|
|
| REGISTER SCHEDULING
| RENAMING
| 26 264
| N 260
|
|
| \
: EXECUTION LOGIC
|
| EU-| EU-2 L EU-N
| N 280
i N\ \ N\
| N 285-| N 28522 i N 285-N
: BACK END
|
RETIREMENT \
v L06IC N 295 g
PROCESSUNG UNIT CORE 210

FIG. 2B



US 12,242,905 B2

Sheet 4 of 9

Mar. 4, 2025

U.S. Patent

00¢

€94
73
o §3INAOM
/21907 DNISSI)0¥d YI¥Q QILYYINID
05¢
(13 (7 [i78
(5)1)1030 T19YHNYYOO0Y ( SNOLLONNY STINCON/IDOT ONISSTIONd HOLINOK
¥3HL0 (5)11A3a (101) DNISSI)04d NVWWOD ANV NOILYYINID —
SONIHL 40 LINYAINI “93) ‘NOIL)ILIA “TONYNILNIVW ALITIAVE0Yd Ul
(5)321A30 Idv “9'3) (S)IIAYIS ONISSI0Yd IdY «—> $3INAOH
3L)INNOYNYOMLIN /1901 DNISSI04d INILNI dIN
- T (S)LINN ONISSID04d
(SIWSINYHDIW
NOILY)INNWKO)
[I[13 .l
55¢ Hdv¥d gee
()30 ¥3sn 9% ) _— MINLDY 350 ¥
MLIISYS04d 1dY., 41
(s374n0s Y > VIYa ALiggoud || HLIM Q3LYID0SSY
MAYd QYIHL QILYNINDD VIva q34INdIY
SIIAYIS 9IM D)
SIdV Q3578 INOMLIN TTE (5)3401S VIVQ/ROWIN




U.S. Patent

40h

Mar. 4,

405—\

APPLICATION

OPERATING SYSTEM

2025 Sheet 5 of 9
F————— —
|

¢ I /—IZI
I
|
| =l = =

DEVICE DRIVER

HARDWARE

NETWORK

APPLICATION

MONITORING LAYER

OPERATING SYSTEM

DEVICE DRIVER

425\

NETWORK

HARDWARE

US 12,242,905 B2

FIG. 4



US 12,242,905 B2

Sheet 6 of 9

Mar. 4, 2025

U.S. Patent

) =

09

) 4

LIS

oS
4V

919

00S~_«

THAJOW HdVHD A LOHTAIA

IdV) HOVAIAINI NVEIOO0OUd NOLLVOI'IddV



U.S. Patent Mar. 4, 2025 Sheet 7 of 9 US 12,242,905 B2

FIG. 6

600
610

620

605



U.S. Patent Mar. 4, 2025 Sheet 8 of 9 US 12,242,905 B2

- 100

START J
705 I

\_ IDENTIFY SET OF ALL APPLICATION
PROGRAM INTERFACES (APIS)

110

CREATE MATRIX/GRAPH OF ALL POSSIBLE API CALLS
(E.G., DIRECTED GRAPH 500)

Ul

115 725\ 130
N (
PROGRAMMATICALLY MONITOR ACTIVE PROGRAMMATICALLY
MATCH APIS WITH SYSTEMS TO DATA DEFINITIONS
TEST APl PATHS
PROBABILITY USING DETERMINE VALID REGARDING
FOR SUCCESS OR
CALLING ARGS APl PATHS IN ATTRIBUTES OF
’ ERROR CONDITIONS
RETURN ARGS, DATA GRAPH WITH APIS AND THEIR AND UPDATE
INTERFACES, ETC. WEIGHTS USE
GRAPH
REFLECTING

FREQUENCY OF USE
135
—

COMBINE RESULTS TO CREATE WEIGHTED
DIRECTED GRAPH OF APl PATHS

140 l

MAKE DIRECTED GRAPH INFORMATION AVAILABLE
TO END DEVICES

745 l

RECEIVE FEEDBACK FROM USER DEVICES TO
MAINTAIN GRAPH INFORMATION

FIG.7A



U.S. Patent Mar. 4, 2025 Sheet 9 of 9 US 12,242,905 B2

150

COsRT >

155 RECEIVE NATURAL LANGUAGE COMMAND (E.G., VOICE
COMMAND, CONVERSATIONAL INTERFACE, ETC)

760 l
\

OBTAIN DIRECTED GRAPH OF API
POSSIBILITIES AND PROBABILITIES

765 l
\.

PARSE COMMAND TO MAP KEYWORDS TO
POSSIBLE APIS (DETERMINE INTENT)

170 l
\

GENERATE SET OF POSSIBLE API SEQUENCES

775\ l

SELECT “BEST SEQUENCE FROM NLP AND
POSSIBLE PATHS N
180 l
\

PROCESS COMMAND

185

790 | PROVIDE FEEDBACK TO
\_| SERVER (INCLUDE INFO
ABOUT “NEW” APIS)

v

END

FIG.7B



US 12,242,905 B2

1
AUTOMATIC APPLICATION PROGRAM
INTERFACE (API) SELECTOR FOR
UNSUPERVISED NATURAL LANGUAGE
PROCESSING (NLP) INTENT
CLASSIFICATION

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of U.S. patent applica-
tion Ser. No. 16/889,613, filed Jun. 1, 2020, which is a
continuation of U.S. patent application Ser. No. 15/859,183,
filed Dec. 29, 2017, which is related to the commonly-
assigned and co-pending non-provisional patent application
having U.S. patent application Ser. No. 15/396,503, filed
Dec. 31, 2016, and entitled “Distributed Natural Language
Message Interpretation Engine” (hereinafter, “the ’503
application”), now issued U.S. Pat. No. 10,491,690, all of
which are hereby incorporated by reference in their entirety.

TECHNICAL FIELD

This disclosure relates generally to apparatuses, methods,
and computer readable media for improved natural language
processing (NLP) intent determination, e.g., for use with
intelligent personal assistant software agents that are con-
figured to interact with people, services, and devices across
multiple communications formats and protocols.

BACKGROUND

Intelligent personal assistant (IPA) software systems com-
prise software agents that can perform various tasks or
services on behalf of an individual user. These tasks or
services may be based on a number of factors, including:
spoken word or verbal input from a user, textual input from
a user, gesture input from a user, a user’s geolocation, a
user’s preferences, a user’s social contacts, and an ability to
access information from a variety of online sources, such as
via the World Wide Web. However, current IPA software
systems have fundamental limitations in natural language
processing, natural language understanding (NLU), and so-
called “intent determination” in practical applications.

For example, in some systems, language context and
action possibilities gleaned from user commands may be
constrained ‘up front’ by identifying the specific service that
the user is sending the command to before attempting to
perform any NLP/NLU-thus increasing the accuracy of
results and significantly reducing the amount of processing
work needed to understand the commands. However, this
strategy may not provide a satisfactory user experience in
the context of Al-enabled IPAs, wherein the user may often
engage in macro-level ‘conversations’ with his or her device
via a generic query to a single IPA ‘persona’ that is capable
of” interacting with many third-party services, APIs, file,
document, and/or systems. In such situations, it becomes
more complex and challenging for the IPA to reliably direct
the user’s commands to the appropriate data, interface,
third-party service, etc.—especially when a given command
may seemingly apply with equal validity to two or more
known third-party interfaces or services that the IPA soft-
ware agent is capable of interfacing with. For example, the
command, “Send {item}.” may apply with seemingly equal
validity to a native text messaging interface, a native email
client, a third-party messaging interface, a flower delivery
service, etc.

10

30

40

45

50

2

Moreover, it is quite computationally expensive to
attempt to parse the grammar of each incoming user com-
mand or query ‘up front,” i.e., to attempt to determine the
intent of the user’s command and/or which specific services,
APIs, file, document, or system the user intends for his
command to be directed to. Computationally-expensive
parsing may also be used to determine how certain words or
phrases in the user’s command depend on, relate to, or
modify other words or phrases in the user’s command,
thereby giving the system a greater understanding of the
user’s actual intent.

NLP systems may be used to attempt to glean the true
intent of a user’s commands, but the success of such systems
is largely dependent upon the training set of data which has
been used to train the NLP system. NLP also requires
computationally-intensive parsing to determine what parts
of the user’s command refer to intents, which parts refer to
entities, which parts refer to attributes, etc., as well as which
entities and attributes are dependent upon (or are modifying)
which intents.

The subject matter of the present disclosure is directed to
overcoming, or at least reducing the effects of, one or more
of the problems set forth above. To address these and other
issues, techniques that enable a more computationally-effi-
cient selection of APIs based on NLP intent classification are
described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating a network architec-
ture infrastructure 100, according to one or more disclosed
embodiments.

FIG. 2A is a block diagram illustrating a computer 200,
which could be used to execute the various processes
described herein, according to one or more disclosed
embodiments.

FIG. 2B is a block diagram illustrating a processor core
210, which may reside on a computer such as computer 200,
according to one or more disclosed embodiments.

FIG. 3 is a block diagram 300 illustrating components of
an example server configured as an API processing service
340 communicatively coupled to other devices through a
network, according to one or more disclosed embodiments.

FIG. 4 illustrates views 400 and 450 to illustrate a layered
model of a software/hardware stack communicatively
coupled to a server configuration, according to one or more
disclosed embodiments.

FIG. 5 illustrates an example directed graph model 500
that may be used to maintain relationships and functionality
paths between APIs within a given computing environment,
according to one or more disclosed embodiments.

FIG. 6 illustrates multiple users and end-user devices
communicatively coupled to a server configuration 120 that
may be configured to provide an API processing service 340,
according to one or more disclosed embodiments.

FIGS. 7A-B illustrate flowcharts of operation 700 repre-
senting one possible method to build and maintain an API
directed graph model 500 and operation 750 representing
one possible method of use for an API directed graph model
500, according to one or more disclosed embodiments.

DETAILED DESCRIPTION

Improved intelligent personal assistant (IPA) software
agents are disclosed that are configured to interact with
various people, service providers, files, and/or smart
devices. More particularly, this disclosure relates to an



US 12,242,905 B2

3

improved Natural Language Processing (NLP) Intent Deter-
mination Service (IDS) that is able to determine the likely
best action to take in response to generic user commands and
queries. The disclosed NLP IDS automatically selects valid
(or potentially valid) API paths (e.g., sequence of API calls)
to produce desired actions. Associated system actions and
known API sequencing rules may then be used to process the
incoming user command or query. A feedback loop is also
disclosed to identify newly available APIs and success
criteria for selected API paths. Discovery of API paths may
be performed using predefined information, monitored
information, programmatically determined interfaces, and
programmatically tested interfaces. A directed graph model
may be used to represent potential API paths.

In some embodiments, disclosed techniques improve a
user’s interaction with applications and devices (e.g., the
user experience). More particularly, some embodiments of
this disclosure are directed to an infrastructure to support
automatic API selection for unsupervised NLP intent clas-
sification. The disclosed infrastructure (e.g., via generating
an accurate API sequence in response to a natural language
command) causes actions matching the intent of the user to
be performed on one or more computer systems. The infra-
structure may then apply techniques such as machine learn-
ing algorithms to incorporate feedback from both successful
and unsuccessful sequences to improve future processing.
For example, a scoring system may be used to calculate
preferred API sequences. Using scoring values may allow
for optimization of those values for a particular action.
Monitoring of actions to build and refine a model of API
sequences may be performed in the computer at different
levels of the software/hardware hierarchy (see FIG. 4). In
this manner, applications may be automatically participating
in the discovery and maintenance of possible API paths
without any modifications. Clearly, although not required,
applications may be designed with knowledge of the dis-
closed improvements and provide interfaces to interact
directly with the disclosed infrastructure to report on API
sequences.

Referring now to FIG. 1, a network architecture infra-
structure 100 is shown schematically. Infrastructure 100
includes computer networks 110, server configuration 120
(e.g., devices implementing an automatic API selector for
unsupervised NLP intent classification according to one or
more disclosed embodiments), client devices 130, third-
party communications devices 140, third-party service pro-
vider devices 150, smart devices 160, third-party ‘API-
enabled’ services 170, and third-party ‘Web-enabled’
services 180. Note that devices may be either physical or
virtualized and may run on dedicated hardware or exist
dynamically in the cloud.

The computer networks 110 may include any communi-
cations network that allows computers to exchange data,
such as the internet 111, local area networks 112, corporate
networks 113, cellular communications networks 114, etc.
Each of the computer networks 110 may operate using any
number of network protocols (e.g., TCP/IP). The computer
networks 110 may be connected to each other and to the
various computing devices described herein (e.g., the inter-
action platform devices of server configuration 120, the
client devices 130, the third-party communications devices
140, the third-party service provider devices 150, the smart
devices 160, the third-party ‘API-enabled’ services 170, and
the third-party ‘Web-enabled” services 180) via hardware
elements such as gateways and routers (not shown).

Interaction platform devices of server configuration 120
may include one or more servers 121 and one or more

30

40

45

55

4

storage devices 122. The one or more servers 121 may
include any suitable computer hardware and software con-
figured to provide the features disclosed herein. Storage
devices 122 may include any tangible computer-readable
storage media including, for example, read-only memory
(ROM), random-access memory (RAM), magnetic disc stor-
age media, optical storage media, solid state (e.g., flash)
memory, etc.

Client devices 130 may include any number of computing
devices that enable an end user to access the features
disclosed herein. For example, client devices 130 may
include, for example, desktop computers 131, tablet com-
puters 132, mobile phone 133, notebook computers 134, etc.

Third-party communications devices 140 may include
email servers such as a GOOGLE® email server (GOOGLE
is a registered service mark of Google Inc.), third-party
instant message servers such as an Instant Messaging (IM)
server, third-party social network servers such as a FACE-
BOOK® or TWITTER® server (FACEBOOK is a regis-
tered trademark of Facebook, Inc. TWITTER is a registered
service mark of Twitter, Inc.), cellular service provider
servers that enable the sending and receiving of messages
such as email messages, short message service (SMS) text
messages, multimedia message service (MMS) messages, or
any other device that enables individuals to communicate
using any protocol and/or format.

Third-party service devices 150 may include any number
of computing devices that enable an end user to request one
or more services via network communication. For example,
cloud-based software as a service (SAAS) or platform as a
service (PAAS) providers and the applications they make
available via the cloud. Smart devices 160 may include any
number of hardware devices that communicate via any of
the computer networks 110 and are capable of being con-
trolled via network communication. Third-party ‘API-en-
abled’ services 170 may include any number of services that
communicate via any of the computer networks 110 and are
capable of being controlled via an Application Programming
Interface (API), such as a ride-sharing service. Third-party
‘Web-enabled’ services 180 may include any number of
services that may have no direct third-party interface, other
than informational content, e.g., information hosted on a
third-party website or the like, such as a train schedule.

The disclosed conversationally aware server configura-
tion 120, therefore, can represent improvements to computer
functionality. For example, the advantages of an automatic
API selection for unsupervised NLP intent classification
described herein can assist with enabling users to better
interact with computers using a conversationally aware
interface (e.g., voice commands, or conversationally struc-
tured commands such as questions or requests). This more
efficient and more accurate association of a user’s intent to
possible API functions may also result in a reduction to
run-time processing of commands and make overall com-
munication between human and machine more efficient.
That is, an automatic API selection for unsupervised NLP
intent classification system may assist with reducing wasted
computational resources (e.g., computational resources that
would otherwise not be necessary due to inefficient com-
munications, etc.). The disclosed server configuration 120
may also integrate information from one or more of the
many system users to continuously improve model accuracy.
For example, the model (e.g., directed graph for API pos-
sibilities and probabilities discussed with reference to FIG.
5 below) may be updated as a result of activities on user
systems to reflect newly discovered APIs and success factors
of API paths. Newly discovered APIs may include web



US 12,242,905 B2

5

services or other network based functions that may be made
available on an ongoing basis. As described in further detail
below, at least one embodiment of an automatic API selec-
tion for unsupervised NLP intent classification system can
be implemented using software, hardware, or a combination
thereof.

Referring now to FIG. 2A, an example processing device
200 for use in the different hardware components that may
be used to implement one or more disclosed embodiments is
illustrated in block diagram form. Processing device 200
may serve in, e.g., a server 121 or a client device 130.
Example processing device 200 comprises a system unit 205
which may be optionally connected to an input device 230
(e.g., keyboard, mouse, touch screen, etc.) and display 235.
A program storage device (PSD) 240 (sometimes referred to
as a hard disk, flash memory, or non-transitory computer
readable medium) is included with the system unit 205. Also
included with system unit 205 may be a network interface
220 for communication via a network (either cellular or
computer) with other mobile and/or embedded devices (not
shown). Network interface 220 may be included within
system unit 205 or be external to system unit 205. In either
case, system unit 205 will be communicatively coupled to
network interface 220. Program storage device 240 repre-
sents any form of non-volatile storage including, but not
limited to, all forms of optical and magnetic memory,
including solid-state storage elements, including removable
media, and may be included within system unit 205 or be
external to system unit 205. Program storage device 240
may be used for storage of software to control system unit
205, data for use by the processing device 200, or both.

System unit 205 may be programmed to perform methods
in accordance with this disclosure. System unit 205 com-
prises one or more processing units, input-output (1/0) bus
225 and memory 215. Access to memory 215 can be
accomplished using the communication bus 225. Processing
unit 210 may include any programmable controller device
including, for example, a mainframe processor, a mobile
phone processor, or, as examples, one or more members of
the INTEL® ATOM™, INTEL© XEON™, and INTEL©O
CORE™ processor families from Intel Corporation and the
Cortex and ARM processor families from ARM. (INTEL,
INTEL ATOM, XEON, and CORE are trademarks of the
Intel Corporation. CORTEX is a registered trademark of the
ARM Limited Corporation. ARM is a registered trademark
of the ARM Limited Company). Memory 215 may include
one or more memory modules and comprise random access
memory (RAM), read only memory (ROM), programmable
read only memory (PROM), programmable read-write
memory, and solid-state memory. As also shown in FIG. 2A,
system unit 205 may also include one or more positional
sensors 245, which may comprise an accelerometer, gyrom-
eter, global positioning system (GPS) device, or the like, and
which may be used to track the movement of user client
devices.

Referring now to FIG. 2B, a processing unit core 210 is
illustrated in further detail, according to one embodiment.
Processing unit core 210 may be the core for any type of
processor, such as a micro-processor, an embedded proces-
sor, a digital signal processor (DSP), a network processor, or
other device to execute code. Although only one processing
unit core 210 is illustrated in FIG. 2B, a processing element
may alternatively include more than one of the processing
unit core 210 illustrated in FIG. 2B. Processing unit core 210
may be a single-threaded core or, for at least one embodi-
ment, the processing unit core 210 may be multithreaded, in

10

15

20

25

30

35

40

45

50

55

60

65

6

that, it may include more than one hardware thread context
(or “logical processor”) per core.

FIG. 2B also illustrates a memory 215 coupled to the
processing unit core 210. The memory 215 may be any ofa
wide variety of memories (including various layers of
memory hierarchy), as are known or otherwise available to
those of skill in the art. The memory 215 may include one
or more code instruction(s) 250 to be executed by the
processing unit core 210. The processing unit core 210
follows a program sequence of instructions indicated by the
code 250. Each instruction enters a front end portion 260 and
is processed by one or more decoders 270. The decoder may
generate as its output a micro operation such as a fixed width
micro operation in a predefined format, or may generate
other instructions, microinstructions, or control signals
which reflect the original code instruction. The front end 260
may also include register renaming logic 262 and scheduling
logic 264, which generally allocate resources and queue the
operation corresponding to the convert instruction for execu-
tion.

The processing unit core 210 is shown including execu-
tion logic 280 having a set of execution units 285-1 through
285-N. Some embodiments may include a number of execu-
tion units dedicated to specific functions or sets of functions.
Other embodiments may include only one execution unit or
one execution unit that can perform a particular function.
The execution logic 280 performs the operations specified
by code instructions.

After completion of execution of the operations specified
by the code instructions, back end logic 290 retires the
instructions of the code 250. In one embodiment, the pro-
cessing unit core 210 allows out of order execution but
requires in order retirement of instructions. Retirement logic
295 may take a variety of forms as known to those of skill
in the art (e.g., re-order buffers or the like). In this manner,
the processing unit core 210 is transformed during execution
of the code 250, at least in terms of the output generated by
the decoder, the hardware registers and tables utilized by the
register renaming logic 262, and any registers (not shown)
modified by the execution logic 280.

Although not illustrated in FIG. 2B, a processing element
may include other elements on chip with the processing unit
core 210. For example, a processing element may include
memory control logic along with the processing unit core
210. The processing element may include I/O control logic
and/or may include /O control logic integrated with
memory control logic. The processing element may also
include one or more caches.

Referring now to FIG. 3 which illustrates, in block
diagram form, an exemplary communications server infra-
structure 300 configured to perform intent classification and
API selection, according to one or more embodiments
disclosed herein. Server infrastructure 300 may be imple-
mented in a similar manner to server configuration 120 and
used to support an automatic API selection for unsupervised
NLP intent classification system as described herein. The
listed server and database components represent a non-
limiting set of examples that may be used to receive moni-
tored events, perform NLP intent processing, provide cor-
relation and analysis, and determine potential API logic
paths in response to natural language commands, according
to one or more disclosed embodiments. Within block 346,
for example, machine learning techniques may be imple-
mented on the one or more servers (e.g., 121 or 341A-N).
Various machine learning algorithms may be used either
individually or in combination and include, support vector
machines (SVMs) and attribute clustering using KNN



US 12,242,905 B2

7

(K-Nearest Neighbor) algorithms. For one embodiment,
server infrastructure 300 may include processing unit(s)
345, memory or data store(s) 315, network based APIs 360
e.g., from third (3rd) party service provider(s), user
device(s) 355, communication mechanisms 310, API pro-
cessing service 340, and network-connected device(s) 350.
For one embodiment, one or more components in server
infrastructure 300 may be implemented as one or more
integrated circuits (ICs). For example, at least one of pro-
cessing unit(s) 345, communication mechanism(s) 310, net-
work based APIs 360, user devices 355, network-connected
device(s) 350, or memory 315 can be implemented as a
system-on-a-chip (SoC) IC, a three-dimensional (3D) IC,
any other known IC, or any known IC combination. For
another embodiment, two or more components in architec-
ture 300 are implemented together as one or more ICs. Each
component of architecture 300 is described below. API
processing service 340 includes one or more computer
devices 341A through 341N configured to perform the
functions described herein for determining possible API
sequences, maintaining API probability graph 330, collect-
ing acquired data 336, generating the generated probability
data 335, determining user intent from natural language
inputs, and receiving feedback from external devices.
Processing unit(s) 345 can include, but are not limited to,
central processing units (CPUs), graphical processing units
(GPUs), other integrated circuits (ICs), memory, and/or
other electronic circuitry. For one embodiment, processing
unit(s) 345 manipulates and/or processes data (e.g., data
associated with user commands, data associated with API
sequences, data comprising feedback from operations result-
ing from natural language command processing, data asso-
ciated with processing operations/algorithms/techniques,
etc.). Processing unit(s) 345 may include: NLP intent pro-
cessing logic/modules 346 for servicing commands received
as natural language requests or queries; monitor processing
logic/modules 347 for collecting, receiving, and processing
information observed on user devices 355; and generated
data processing logic/modules 348 for collecting and ana-
lyzing generated test sequences and other programmatically
determined information, in accordance with one or more
embodiments. For one embodiment, NLP intent processing
logic/modules 346, monitor processing logic/modules 347,
and/or generated data processing logic/modules are imple-
mented as hardware (e.g., electronic circuitry associated
with processing unit(s) 345, circuitry, dedicated logic, etc.),
software (e.g., one or more instructions associated with a
computer program executed by Processing unit(s) 345,
software run on a general-purpose computer system or a
dedicated machine, etc.), or a combination thereof.
Processing logic/modules 346, 347, and 348 can be
employed in cooperation with one or more API processing
service(s) 340 and an API probability graph 330 to perform
tasks on behalf of users. Processing logic/modules 346, 347,
and 348 may be part of a computing system (e.g., a laptop,
server, a virtual machine, a programmable device, any other
type of computing system, etc.) capable of processing user
messages. User commands can be provided to architecture
300 in the form of user inputs in natural language encoded
to be sent across a communication network to provide an
input to API processing service 340. Natural language inputs
may be received from a user device 355 over a network via
communications mechanisms 310. Further, data from net-
work based APIs and network connected devices 350 may
also be made available via communication mechanisms 310.
Information regarding network based APIs 360 and natural
language commands (and their processing results) may be

5

10

15

20

25

30

40

45

50

55

60

65

8

used to form or add to an API selection criteria as maintained
in API probability graph 330 to assist with implementation
of embodiments as disclosed herein.

API processing service 340 can obtain or receive any type
of data associated with servicing user natural language
interaction with computer systems and API sequencing. This
data includes digitalized data representing one or more
activities associated with a user account. The data can, for
example, also include data stored in memory/data store(s)
315. For one embodiment, and as shown in FIG. 3, this data
can include acquired data 336 and/or generated probability
data 335. As used herein, “acquired data” refers to data
collected as a result of monitoring API sequences to deter-
mine valid and preferred API paths. The data can optionally
also include generated probability data 330, which refers to
data resulting from processing definitional data or data
associated with generated test sequences of API paths. One
difference between acquired data 336 and generated prob-
ability data 335 is that the acquired data 336 represents “hard
data.” That is, acquired data 336 is known with a high degree
of certainty, such as records of past activities or a record of
current activity. On the other hand, generated probability
data 335 may be considered “soft data.” That is, generated
probability data 335 includes data with a lower degree of
certainty until actually used in a successful command
sequence and includes data mined and processed with
machine learning techniques. For one embodiment, gener-
ated probability data 335 represents the result of performing
at least one of the following: (i) analyzing published API
inputs and outputs to correlate potential API sequences; (ii)
processing a definitional criteria describing API capabilities;
(iii) applying logical rules to the generated probability data
335 or acquired data 336; (iv) programmatically testing API
paths to determine success or failure of generated API paths;
or (v) any other known methods used to infer new informa-
tion from generated or acquired information. For example,
acquired data 336 may include an actual API sequence
performed on a monitored system by a user (with or without
NLP capabilities), while generated data 335 may include
predictions about how APIs might interrelate with each
other.

Referring again to FIG. 3, API processing service 340
uses acquired data 336 and/or generated probability data 335
to generate and maintain API probability graph 330. As
shown in FIG. 3, all or some of API probability graph 330
can be stored or acted upon by processing unit(s) 345,
memory 315, and/or the service(s) 340. As used herein, an
“API probability graph,” a “directed API sequence graph”
and their variations refer to a multi-dimensional, dynami-
cally organized collection of data used by message process-
ing service 340 for deductive reasoning. For one embodi-
ment, API probability graph 330 acts as a knowledge based
system that includes a knowledge base and/or an inference
engine for a neural network. Consequently, API probability
graph 330 represents a dynamic resource that has the capac-
ity to “learn” as new information (e.g., acquired data 336,
generated data 335, etc.) or new functional capabilities (e.g.,
API methods) are added. API probability graph 330, as a
knowledge based system of a neural network, enables more
than accessing information and extrapolating data for infer-
ring or determining additional data—it can also be used for
classification (e.g., pattern and sequence recognition, nov-
elty detection, sequential decision making, etc.); and data
processing (e.g., filtering, clustering, blind source separation
and compression, etc.). As used herein, a “dimension” refers
to an aspect upon which APIs may be related, classified, or
organized. A dimension can be based on monitored infor-



US 12,242,905 B2

9

mation, feedback information, definitional information, or
programmatically generated information.

API probability graph 330 may include multiple nodes
and edges. Each node can represent one or more units of data
(e.g., an API or combined sequence of APIs). Each edge
(which may or may not be weighted) can represent relation-
ships or correlations between the APIs represented as nodes
of the graph. Weights can account for a determined likeli-
hood of success for a path between two adjacent APIs as
depicted in the graph. A higher weighted edge connection
indicates a valid or preferred path exists while a limited
connection indicates a possible path and a non-connection
(represented as a dotted line association in FIG. 5) represents
the path is not a valid sequence path. Accordingly, API
processing services 340 may use this information as a
possible scoring system to select the most desired path
between APIs selected from the set of all available APIs as
represented in API probability graph 330. Thus NLP intent
processing logic/modules 346 may be able to select an
appropriate set of APIs to perform functions consistent with
the intent of a natural language command. In an API
probability graph 330, APIs may have different weights
based on direction of connection in the directed graph. For
example, it may be valid (or even preferred) for API 1 to call
API 2, but API 2 may not validly ever call API 1 (ie., a
non-connection from API 2 to API 1).

Architecture 300 can include memory/data stores 315 for
storing and/or retrieving acquired data 336, generated prob-
ability data 335, and/or API probability graph 330. Memory/
data stores 315 can include any type of memory known (e.g.,
volatile memory, non-volatile memory, etc.). Each of data
336, 335, and 330 can be generated, processed, and/or
captured by the other components in architecture 300. For
example, acquired data 336, generated probability data 335,
and/or API probability graph 330 represents the result of
processing data generated by, captured by, processed by, or
associated with one or more user devices 355, network based
APIs 360, network connected devices 350, and/or process-
ing unit(s) 345, etc. Architecture 300 can also include a
memory controller (not shown), which includes at least one
electronic circuit that manages data flowing to and/or from
memory 315 The memory controller can be a separate
processing unit or integrated in processing unit(s) 345.

Architecture 300 can include network-connected devices
350, which may include any number of hardware
devices that communicate via any of the communication
mechanism(s) 310 and are capable of being controlled via
network communication. Examples of devices 350 include,
but are not limited to, IoT devices, laptop computers,
desktop computers, wearables, servers, vehicles, and any
type of programmable device or computing system.

For one embodiment, architecture 300 includes commu-
nication mechanism(s) 310. Communication mechanism(s)
310 can include a bus, a network, or a switch. When
communication mechanism(s) 310 includes a bus, commu-
nication mechanism(s) 310 include a communication system
that transfers data between components in architecture 300,
or between components in architecture 300 and other com-
ponents associated with other systems (not shown). As a bus,
communication mechanism(s) 310 includes all related hard-
ware components (wire, optical fiber, etc.) and/or software,
including communication protocols. For one embodiment,
communication mechanism(s) 310 can include an internal
bus and/or an external bus. Moreover, communication
mechanism(s) 310 can include a control bus, an address bus,
and/or a data bus for communications associated with archi-
tecture 300. For one embodiment, communication mecha-

10

15

20

25

30

35

40

45

50

55

60

65

10

nism(s) 310 can be a network or a switch. As a network,
communication mechanism(s) 310 may be any network such
as a local area network (LAN), a wide area network (WAN)
such as the Internet, a fiber network, a storage network, or
a combination thereof, wired or wireless. When communi-
cation mechanism(s) 310 includes a network, components in
architecture 300 do not have to be physically co-located.
When communication mechanism(s) 310 includes a switch
(e.g., a “cross-bar” switch), separate components in archi-
tecture 300 may be linked directly over a network even
though these components may not be physically located next
to each other. For example, two or more of processing unit(s)
345, communication mechanism(s) 310, memory 315, and
network based APIs 360 are in distinct physical locations
from each other and are communicatively coupled via
communication mechanism(s) 310, which is a network or a
switch that directly links these components over a network.
Monitoring of API Interaction Sequences (Non-Exhaustive
Examples)

FIG. 4 shows two block diagrams (400 and 450) illus-
trating examples of a hardware and software stack, each in
the form of a layered model, for use in explaining some
methods of implementing monitoring hooks, according to
one or more disclosed embodiments. Monitoring may be
useful to build and maintain an API probability graph (330
and 500) because actual functional applications are perform-
ing the calls (rather than test generated call sequences).
Monitoring a computer in functional use may provide
detailed information about how APIs may be related to each
other in API probability graph (330 and 500). Block diagram
400 includes layers depicting interaction points between
different functional components of a computer implemented
solution. Application layer 405 is depicted at the top of the
layered model to indicate that it is “closest” to the user with
respect to functionality. In typical operation, a user interacts
with an application (as supported by the operating system)
to introduce commands (e.g., natural language commands)
for execution where the execution begins at application layer
405. The application, in turn, sends and receives commands
and information to operating system layer 410. Operating
system layer 410, as shown, sits between application layer
405 and device driver layer 415. Device driver layer 415
provides the interface between operating system layer 405
and hardware components represented by hardware layer
420. Hardware components may include input devices such
as keyboards and mice for receiving user input, output
devices such as traditional monitors and speakers, and
input/output devices such as touch screen monitors, network
interfaces (to communicate via network 425), disk controller
cards, memory devices, etc. The layered model shown in
block diagram 400 represents a traditional logical represen-
tation of a software/hardware stack and may not be totally
accurate for all implementations. For example, some por-
tions of device drivers may more accurately reside within
operating system layer 410 depending on how the operating
system was implemented. In any case, block diagram 400
represents a conceptual model of how different components
of a processing device may be configured to support appli-
cation execution. As further illustrated in block diagram 400,
network 425 (which may include any of networks 110) may
be used to communicatively couple a processing device with
server configuration 120. In this example, API calls and
sequences may be monitored by altering components at any
layer of the model. For example, the hardware could be
modified to provide additional events directed to a monitor-
ing infrastructure along with traditionally supplied events.
Similarly, the device driver or operating system may be



US 12,242,905 B2

11

modified to include additional functionality directed to sup-
port disclosed embodiments of API monitoring and analysis.
Finally, each application may be adapted to include addi-
tional logic to support disclosed embodiments of API moni-
toring and analysis. While all of these implementations are
possible, they represent varying degrees of “cost” in both
development time and possible processing device perfor-
mance. Accordingly, some combination of alterations at
different layers may be desirable. Further, an example imple-
mentation of monitoring capabilities potentially requiring no
changes to other layers is illustrated by block diagram 450
illustrated below. Again, a preferred embodiment may
include combinations of the disclosed possible implemen-
tations.

Continuing with FIG. 4, block diagram 450 illustrates a
variation to the layered model explained above. In particular,
block diagram 450 includes monitoring layer 455 imple-
mented between application layer 405 and operating system
layer 410. Introduction of monitoring layer 455, as illus-
trated, may represent an embodiment where minimal
changes (if any) are required at other layers of the model. It
may even be possible to implement monitoring layer 455
without application layer 405 or operating system layer 410
having to change their method of operation with adjacent
layers of the model. Monitoring layer 455 could be config-
ured to identify any pertinent interactions (e.g., API calls and
their sequence) between application layer 405 and operating
system layer 410. For any pertinent interactions, monitoring
layer 455 could initiate transmission of information via
network 425 to server configuration 120. Once analyzed and
processed, information pertaining to API paths could be
added to API probability graph (e.g., 330 or 500).

API Directed Graph Model

Referring now to FIG. 5, a 2D graphical approximation of
an exemplary API directed graph 500 associated with a set
of APIs is illustrated. As shown, API directed graph 500
includes one cluster six APIs 501-506. As used herein, an
“API cluster,” a “cluster of APIs,” and their variations refers
to a group of at least two APIs that is based on a relationship
between the set of APIs (e.g., their functional interoperabil-
ity). In FIG. 5, each of the APIs 501-506 in the API directed
graph 500 represents an individual path/connection (i.e.,
edges) to represent a functional relationship between indi-
vidual APIs. It is to be appreciated that there can be any
number of APIs (i.e., at least two APIs) in API directed graph
500 and that API directed graph 500 can include any number
of contexts. In practice, it is anticipated that there may be a
very large number of APIs and in some embodiments
multiple APIs may be grouped together in a pre-defined
sequence and represented in API directed graph 500 as a
single node.

API directed graph 500 includes several uni-directional or
bi-directional edges between the nodes (e.g., APIs) 501-506.
Each of these edges represents a correlation between its pair
of nodes (e.g., APIs). Furthermore, there can be different
types of edges based on a degree of correlation between a
pair of nodes. There can be represented a relationship
between two nodes as a single bi-directional edge (e.g., 514)
or two independent uni-directional edges (e.g., A single
bi-directional edge represents that the same probability
relationship (edges 513, 514, 515, 516) exists between both
APIs. That is, as shown by edge 514 it is just as likely that
API 501 will call API 505 as it is that API 505 will call API
501. Edges 509 and 510 represent a potential difference in
likelihood of two APIs that might call each other. Edge 509
is a heavier weight than edge 510 to indicate that API 501
is more likely to call API 502 than it is that API 502 would

20

40

45

12

call API 501. It is however possible for API 502 to call API
501. Edges 511 and 512 represent two different “one-way
relationships™ between two APIs. Edge 511 represents that
API 505 may call API 501 but edge 512 (shown as a dotted
line) represents that there is no known valid way for AP1501
to call API 505. Edge 513 (shown as a dashed line) repre-
sents that the relationship between API 502 and API 503 is
not known at all. This may occur when a new API is
introduced into the system (e.g., a new web service is
published), for a path that has not been tested yet, or for a
path not yet identified by monitoring. Edge 515 represents
that API 503 may not call API 505 and that API 505 may not
call API 503. Clearly, there can only be a single relationship
for a given direction between the two same APIs within API
directed graph 500. API directed graph 500 is illustrative
only as real life systems would include many more APIs and
relatively few bi-directional relationships that have the same
weight.

As mentioned briefly above, each of the edges can be
weighted to show a degree of correlation between its pair of
nodes. Correlations between the nodes 501-506 (i.e., the
nodes 501-506 representing individual APIs) in API directed
graph 500 can be based on acquired data (e.g., 336 of FIG.
3), relationships of APIs based on definitional data (block
725 of FIG. 7A), and/or generated probability data (335 of
FIG. 3). For one embodiment, one or more of acquired data,
relationships, and/or generated probability data is valued
and combined to form the edge weight. For example, and as
illustrated in FIG. 3, the edges between one or more pairs of
APIs having differing thicknesses to show that the weighting
of'the correlations can be different and different based on the
direction of the relationship.

FIG. 6 illustrates, in block diagram 600, multiple users
with end-user devices communicatively coupled to a server
configuration 120 that may be configured to interact with an
API processing service 340, according to one or more
disclosed embodiments. Different examples of users’
devices and groups of devices for a single user are shown.
Beginning with user 605 a natural language command may
be provided via interface 620 (which may be a digital
assistant (e.g., IPA) or an application program) and pro-
cessed by device 610. Device 610 may have a local copy of
a directed API graph (see FIG. 5 above) or portion thereof
to assist in parsing and processing the natural language
command. Alternatively, the natural language command
may be sent to server configuration 120 that contains an API
processing service 340. In either case, an API probability
graph and its information may be used to create an order of
APIs to perform the requested function(s). Note that appli-
cations that are run on device 610 that are not using a natural
language interface may also be monitored and their infor-
mation with regard to API sequencing provided to server
configuration 120. As an example, user 605 may “tell”
device 610 to “send a picture taken on the device at noon
today to Joe.” This would cause the system to prepare a set
of APIs to identify the picture, identify Joe (presumably
from contacts), and identify a method to send the picture
(e.g., email or SMS). Accordingly, API processing service
340 may supply the appropriate APIs in the appropriate
order to allow device 610 to execute them in that order to
have the picture sent. If everything performs properly, API
processing service 340 may note success. However, if user
605 must alter the proposed sequence to achieve the desired
intent, the alteration may be provided to API processing
service 340 to adjust its information to affect future pro-
cessing of this or similar command requests. User 606 is
shown interacting with interface 620 on their set of personal



US 12,242,905 B2

13

devices 610" and 612. User’s 607 and 608 are each shown
interacting with interface 620 on their respective devices
612',610",611, and 612". In this manner, API processing
service 340 executing on server configuration 120 may learn
from both what each individual user does to correct API
sequences but may also learn from monitoring normal
applications. As a result, a model as maintained in a directed
API graph 500 (or API probability graph 330) may improve
over time and assist in natural language command process-
ing.

Referring now to FIGS. 7A-B, a flowchart of operation
700 represents one possible method to build and maintain an
APl directed graph model 500. Operation 750 represents one
possible method ofuse for an API directed graph model 500,
according to one or more disclosed embodiments. Operation
700 begins at block 705 where a set of all APIs known to
exist within a system are identified. At block 710, a matrix
or graph model (e.g., API directed graph 500, API probabil-
ity graph 330) is initialized to be used to maintain relation-
ships between APIs and assign probabilities of possible
paths connecting each API to other available APIs. Blocks
715, 720, 725, and 730 represent processing that may be
performed in parallel to assist in creating/maintaining a
graph model. Block 715 indicates that APIs may be pro-
grammatically matched with each other based on their
calling arguments, return arguments, or exposed data inter-
faces. In this manner APIs that work with like information
may be grouped together as they may be more likely to have
a functional relationship between them. That is, if the input
to API 1 matches the outputs of API 2, then API 2 may likely
have a valid reason to be called sequentially after API 1.
Block 720 indicates that systems may be monitored (e.g.,
user systems of FIG. 6) to determine API paths that are used
during their normal operation. Normal operation may
include reacting to natural language commands as well as
other command interfaces (e.g., touchscreen, keyboard,
etc.). In this manner, it may be learned which APIs are
related to each other and their sequence of relations such that
this information may be provided as input to API directed
graph 500. Block 725 indicates that definitional data may be
used to add information to API directed graph 500. That is,
pre-defined data may be input to the API processing service
340 to identify information about how APIs interrelate and
their sequence probabilities, for example. Block 730 indi-
cates that a system such as server configuration 120 may
create test programs to execute possible API paths and
determine if the proposed sequences finish to completion or
cannot complete because of some error condition. In either
case, information determined from generated test programs
may represent generated data 335 that may be further used
by API processing service 340. Block 735 indicates that each
of blocks 715-730 produce results that may be combined to
create a directed graph of API paths and associated weight-
ing for each path segment. Block 740 indicates that API
directed graph information may be made available to end
user devices for use in processing natural language com-
mands, for example. Block 745 indicates that end user
devices may provide feedback to API processing service 340
to maintain and further refine graph information about API
relationships.

Turning to FIG. 7B, operation 750 illustrates one possible
method of use for an API directed graph model 500. For
example, by API processing service 340 on server configu-
ration 120. Operation 750 begins at block 755 where a
natural language command (e.g., a voice command or a
command from a “conversational” interface) is received.
Block 760 indicates that a directed graph of API possibilities

5

10

20

25

30

35

40

45

55

60

65

14

and probabilities (e.g., API directed graph 500 or portion
thereof) may be obtained. Block 765 indicates that the
natural language command may be parsed to identify key-
words and match the keywords with one or more APIs in an
API sequence to match the user’s intent. For example,
generate a command sequence to fulfill the user’s requested
action as shown at block 770. Block 775 indicates that the
system (e.g., API processing service 340) may select an API
sequence using an API directed graph 500 that “best”
matches the NLP processing possible paths. A “best” match
indicates that weights on edges of API directed graph 500
are taken into account. Block 780 indicates that a first
proposed command sequence is processed (e.g., on a user
device). Decision 785 determines if there is successful
execution and may receive feedback from a user to identify
success. I[f not, the NO prong of decision 785, flow continues
to decision 795 where it is determined if another try should
be attempted. If so, the YES prong of decision 785, flow
returns to block 775 where another selection of “best” from
remaining available options may be selected. However, if
there are no other high probability options available or a
retry threshold has been reached, for example. It may be
determined that no further attempts are to be made for this
command (the NO prong of decision 795) and flow contin-
ues to block 790 where feedback regarding failure may be
provided to the server. However, if the command is suc-
cessful, the YES prong of decision 785, flow continues to
block 790 where information about the successful command
(and any adjustments made by the user) may be returned to
the server to provide feedback to further tune the model
(e.g., API directed graph 500).

Examples of Possible Further Embodiments

The following examples pertain to further embodiments.

Example 1 is a computer-implemented method where the
methods includes the acts of creating a graphical represen-
tation of relationships between a set of available application
program interface (API) calls available to a computer sys-
tem; determining actual or perspective paths through the
graphical representation based on sequences of calls
between each API of the set of available API calls; assigning
a path metric to each of the determined and perspective
paths, the path metric indicating, in part, a likelihood of
success for the each path; and providing at least a portion of
the graphical representation of relationships to an end user
device, wherein the end user device utilizes the at least a
portion of the graphical representation of relationships and
corresponding path meitrics to determine a response to a
natural language command.

Example 2 expands from example 1 and includes wherein
determining the actual or perspective paths comprises
receiving information from the end user device representa-
tive of monitoring performed on the end user device to
identify actual API sequences that have taken place on the
end user device.

Example 3 expands from example 2 and includes receiv-
ing information from the end user device and a plurality of
other devices representative of monitoring performed on
each respective device to identify actual API sequences that
have taken place on the each respective device; and updating
the graphical representation of relationships to adjust the
path metric assigned to the each path corresponding to the
actual API sequences that have taken place on the each
respective device.

Example 4 expands from example 1, wherein determining
the actual or perspective paths comprises receiving infor-



US 12,242,905 B2

15

mation from the end user device representative of program-
matically testing API paths for success or error conditions.

Example 5 expands from example 1, wherein determining
the actual or perspective paths comprises receiving infor-
mation representative of definitional data describing attri-
butes of APIs and their use.

Example 6 expands from example 1, wherein determining
the actual or perspective paths comprises programmatically
matching APIs with a probability of success based on calling
arguments of each API, return arguments of each API, or
data interfaces used by each API.

Example 7 expands from example 1 and includes receiv-
ing feedback from the end user device representative of
failure of processing the natural language command and a
sequence of API calls resulting in failure; and updating the
graphical representation of relationships to adjust the path
metric assigned to the each path corresponding to the
sequence of API calls resulting in failure.

Example 8 expands from example 1 and includes identi-
fying a newly available API that was not available at the
time of creating the graphical representation of relation-
ships; and adding information about the newly available API
to the graphical representation of relationships.

Example 9 expands from example 8, wherein the newly
available API is a web service API.

Example 10 expands from example 1, wherein the graphi-
cal representation of relationships between the set of avail-
able API calls includes an indication that a first API may
never call a second APL.

Each of the above examples may also be implemented as
instructions stored on a computer readable medium to cause
a computer system to perform the method or may be
implemented in a computer system to perform the method
associated with any combination of the above examples.

In the foregoing description, for purposes of explanation,
numerous specific details are set forth in order to provide a
thorough understanding of the disclosed embodiments. It
will be apparent, however, to one skilled in the art that the
disclosed embodiments may be practiced without these
specific details. In other instances, structure and devices are
shown in block diagram form in order to avoid obscuring the
disclosed embodiments. References to numbers without
subscripts or suffixes are understood to reference all instance
of subscripts and suffixes corresponding to the referenced
number. References to numbers with one or more “prime”
symbols (i.e., single quote) represent that the same type of
element is referred to but it may be configured in a different
manner. For example, if element A represents a tablet or cell
phone then element A' may represent a tablet or cell phone
associated with a different user than the tablet or cell phone
represented by element A. That is, both elements A, and A’
represent cell phones but they may be different instances of
a cell phone and may be different in hardware or software
characteristics. Moreover, the language used in this disclo-
sure has been principally selected for readability and instruc-
tional purposes, and may not have been selected to delineate
or circumscribe the inventive subject matter, resort to the
claims being necessary to determine such inventive subject
matter. Reference in the specification to “one embodiment”
or to “an embodiment” means that a particular feature,
structure, or characteristic described in connection with the
embodiments is included in at least one disclosed embodi-
ment, and multiple references to “one embodiment” or “an
embodiment” should not be understood as necessarily all
referring to the same embodiment.

The terms “a,” “an,” and “the” are not intended to refer to
a singular entity unless explicitly so defined, but include the

25

40

45

65

16

general class of which a specific example may be used for
illustration. The use of the terms “a” or “an” may therefore
mean any number that is at least one, including “one,” “one
or more,” “at least one,” and “one or more than one.” The
term “or”” means any of the alternatives and any combination
of the alternatives, including all of the alternatives, unless
the alternatives are explicitly indicated as mutually exclu-
sive. The phrase “at least one of” when combined with a list
of items, means a single item from the list or any combi-
nation of items in the list. The phrase does not require all of
the listed items unless explicitly so defined.

It is also to be understood that the above description is
intended to be illustrative, and not restrictive. For example,
above-described embodiments may be used in combination
with each other and illustrative process steps may be per-
formed in an order different than shown. Many other
embodiments will be apparent to those of skill in the art
upon reviewing the above description. The scope of the
invention therefore should be determined with reference to
the appended claims, along with the full scope of equivalents
to which such claims are entitled. In the appended claims,
terms “including” and “in which” are used as plain-English
equivalents of the respective terms “comprising” and
“wherein.”

What is claimed is:

1. A computer-implemented method, comprising:

monitoring application program interface (API) calls
resulting from interactions between two or more APIs
each corresponding to one of an application layer of an
application on a plurality of devices and an operating
system layer of the plurality of devices;

determining API call sequences for the interactions from
the monitored API calls;

accessing a graphical representation of relationships
between the two or more APIs, wherein the relation-
ships between the two or more APIs are associated with
call paths executable to respond to one of a user
command or a user query for a natural language pro-
cessing (NLP) intent classification system of the appli-
cation;

adjusting, for the graphical representation, the call paths
associated with the relationships between the two or
more APIs in the graphical representation, wherein the
adjusting comprises:

generating a potential call path using an artificial intelli-
gence (Al) model based on the monitored API calls and
the API call sequences,

executing a test program of the potential call path, and

determining, based on the executing, whether the poten-
tial call path results in a finished sequence of events or
an error condition for one of the user command or the
user query;

updating the relationships in the graphical representation
to include the potential call path with the call paths;

configuring the NLP intent classification system to
execute the potential call path to respond to the one of
the user command or the user query;

executing one of the API call sequences for the potential
call path;

determining a response to the user command or the user
query based on the executing the one of the API call
sequences, wherein the response includes at least a
portion of the graphical representation and correspond-
ing path metrics for the API calls in the one of the API
call sequences corresponding to the potential call path;



US 12,242,905 B2

17

storing the response that enables responding to the user
command or the user query on demand when received;
and

providing the response to an end user device based on the

user command or the user request.

2. The computer-implemented method of claim 1,
wherein, prior to the adjusting, the computer-implemented
method further comprises:

receiving feedback to at least a portion of the graphical

representation associated with one or more of the call
paths,
wherein the adjusting is performed based on the feedback.
3. The computer-implemented method of claim 1,
wherein the generating the potential call path comprises
updating one or more assigned path metrics of the call paths
based on the monitored API calls and the API call sequences,
and wherein the potential call path is generated from the
updating.
4. The computer-implemented method of claim 1, further
comprising:
receiving an indication of a failure to process the user
command or the user query using one of the API call
sequences corresponding to the potential call path; and

updating the graphical representation based on the one of
the API call sequences resulting in the failure.

5. The computer-implemented method of claim 1,
wherein generating the potential call path comprises:

receiving information from an end user device represen-

tative of programmatically testing each of the API call
sequences to respond to the one of the user command
or the user query;

receiving information representative of definitional data

for attributes of the Al model; and
programmatically matching the AP]I calls to the one of the
user command or the user query with a probability of
success based on calling arguments of the two or more
APIs corresponding to each of the API calls, return
arguments of the two or more APIs, or data interfaces
used by the two or more APIs.
6. The computer-implemented method of claim 1, further
comprising: identifying a newly available API call that was
not available at a time of creating the potential call path; and
adding information for the newly available API to at least
one of the graphical representation or the potential call path.
7. A system comprising:
a network communications interface;
a memory; and
one or more processing units, communicatively coupled
to the memory and the network communications inter-
face, wherein the memory stores instructions config-
ured to cause, when executed, the one or more pro-
cessing units to perform operations comprising:

monitoring application program interface (API) calls
resulting from interactions between two or more APls
each corresponding to one of an application layer of an
application on a plurality of devices and an operating
system layer of the plurality of devices;

determining API call sequences for the interactions from

the monitored API calls;

accessing a graphical representation of relationships

between the two or more APIs, wherein the relation-
ships between the two or more APIs are associated with
call paths executable to respond to one of a user
command or a user query fora natural language pro-
cessing (NLP) intent classification system of the appli-
cation;

20

30

40

45

55

60

18

adjusting, for the graphical representation, the call paths
associated with the relationships between the two or
more APIs in the graphical representation, wherein the
adjusting comprises:

generating a potential call path using an artificial intelli-
gence (Al) model based on the monitored API calls and
the API call sequences,

executing a test program of the potential call path, and

determining, based on the executing, whether the poten-
tial call path results in a finished sequence of events or
an error condition for one of the user command or the
user query;

updating the relationships in the graphical representation
to include the potential call path with the call paths;

configuring the NLP intent classification system to
execute the potential call path to respond to the one of
the user command or the user query;

executing one of the API call sequences for the potential
call path;

determining a response to the user command or the user
query based on the executing the one of the API call
sequences, wherein the response includes at least a
portion of the graphical representation and correspond-
ing path metrics for the API calls in the one of the API
call sequences corresponding to the potential call path;

storing the response that enables responding to the user
command or the user query on demand when received;
and

providing the response to an end user device based on the
user command or the user request.

8. The system of claim 7, wherein, prior to the adjusting,
the operations further comprise:

receiving feedback to at least a portion of the graphical
representation associated with one or more of the call
paths,

wherein the adjusting is performed based on the feedback.

9. The system of claim 7, wherein the generating the
potential call path comprises updating one or more assigned
path metrics of the call paths based on the monitored API
calls and the API call sequences, and wherein the potential
call path is generated from the updating.

10. The system of claim 7, wherein the operations further
comprise:
receiving an indication of a failure to process the user
command or the user query using one of the API call
sequences corresponding to the potential call path; and

updating the graphical representation based on the one of
the API call sequences resulting in the failure.

11. The system of claim 7, wherein generating the poten-
tial call path comprises:

receiving information from an end user device represen-
tative of programmatically testing each of the API call
sequences to respond to the one of the user command
or the user query,

receiving information representative of definitional data
for attributes of the Al model; and

programmatically matching the API calls to the one of the
user command or the user query with a probability of
success based on calling arguments of the two or more
APIs corresponding to each of the API calls, return
arguments of the two or more APIs, or data interfaces
used by the two or more APIs.



US 12,242,905 B2

19

12. The system of claim 7, wherein the operations further
comprise:

identifying a newly available API call that was not

available at a time of creating the potential call path;
and

adding information for the newly available API to at least

one of the graphical representation or the potential call
path.

13. A non-transitory computer-readable medium compris-
ing computer-executable instructions stored thereon to cause
one or more processing units to perform operations com-
prising:

monitoring application program interface (API) calls

resulting from interactions between two or more APls
each corresponding to one of an application layer of an
application on a plurality of devices and an operating
system layer of the plurality of devices;

determining API call sequences for the interactions from

the monitored API calls;

accessing a graphical representation of relationships

between the two or more APIs, wherein the relation-
ships between the two or more APIs are associated with
call paths executable to respond to one of a user
command or a user query for a natural language pro-
cessing (NLP) intent classification system of the appli-
cation;

adjusting, for the graphical representation, the call paths

associated with the relationships between the two or
more APIs in the graphical representation, wherein the
adjusting comprises:

generating a potential call path using an artificial intelli-

gence (Al) model based on the monitored API calls and
the API call sequences,

10

15

25

30

20

executing a test program of the potential call path, and

determining, based on the executing, whether the poten-

tial call path results in a finished sequence of events or
an error condition for one of the user command or the
user query;
updating the relationships in the graphical representation
to include the potential call path with the call paths;

configuring the NLP intent classification system to
execute the potential call path to respond to the one of
the user command or the user query;

executing one of the API call sequences for the potential

call path;
determining a response to the user command or the user
query based on the executing the one of the API call
sequences, wherein the response includes at least a
portion of the graphical representation and correspond-
ing path metrics for the API calls in the one of the API
call sequences corresponding to the potential call path;

storing the response that enables responding to the user
command or the user query on demand when received;
and

providing the response to an end user device based on the

user command or the user request.

14. The non-transitory computer-readable medium of
claim 13, wherein, prior to the adjusting, the operations
further comprise:

receiving feedback to at least a portion of the graphical

representation associated with one or more of the call
paths,

wherein the adjusting is performed based on the feedback.

#* #* #* #* #*



	Front Page
	Drawings
	Specification
	Claims

